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ABSTRACT
Today, computer systems hold large amounts of personal data. Yet

while such an abundance of data allows breakthroughs in artificial

intelligence, and especially machine learning, its existence can be a

threat to user privacy, and it can weaken the bonds of trust between

humans and AI. Recent regulations now require that, on request,

private information about a user must be removed from both com-

puter systems and from machine learning models – this legislation

is more colloquially called “the right to be forgotten”). While re-

moving data from back-end databases should be straightforward,

it is not sufficient in the AI context as machine learning models

often ‘remember’ the old data. Contemporary adversarial attacks on

trained models have proven that we can learn whether an instance

or an attribute belonged to the training data. This phenomenon calls

for a new paradigm, namely machine unlearning, to make machine

learning models forget about particular data. It turns out that recent

works on machine unlearning have not been able to completely

solve the problem due to the lack of common frameworks and re-

sources. Therefore, this paper aspires to present a comprehensive

examination of machine unlearning’s concepts, scenarios, methods,

and applications. Specifically, as a category collection of cutting-

edge studies, the intention behind this article is to serve as a com-

prehensive resource for researchers and practitioners seeking an

introduction to machine unlearning and its formulations, design cri-

teria, removal requests, algorithms, and applications. In addition, we

aim to highlight the key findings, current trends, and new research

areas that have not yet featured the use of machine unlearning but

could benefit greatly from it. We hope this survey serves as a valu-

able resource for machine learning researchers and those seeking to

innovate privacy technologies. Our resources are publicly available

at https://github.com/tamlhp/awesome-machine-unlearning.

KEYWORDS
machine unlearning, right to be forgotten, user privacy, decremental

learning, certified removal, data forgetting, data deletion, model

verification, model repair, model indistinguishability, adversarial

attacks

ACM Reference Format:
Thanh Tam Nguyen

1
, Thanh Trung Huynh

2
, Zhao Ren

3
, Phi Le Nguyen

4
,

Alan Wee-Chung Liew
1
, Hongzhi Yin

5
, Quoc Viet Hung Nguyen

1
. 2024.

A Survey of Machine Unlearning. In Proceedings of . ACM, New York, NY,

USA, 24 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

, ,
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Computer systems today hold large amounts of personal data. Due

to the great advancement in data storage and data transfer technolo-

gies, the amount of data being produced, recorded, and processed

has exploded. For example, four billion YouTube videos are watched

every day [150]). These online personal data, including digital foot-

prints made by (or about) netizens, reflects their behaviors, inter-

actions, and communication patterns in real-world [129]. Other

sources of personal data include the digital content that online

users create to express their ideas and opinions, such as product re-

views, blog posts (e.g. Medium), status seeking (e.g. Instagram), and

knowledge sharing (e.g. Wikipedia) [131]. More recently, personal

data has also expanded to include data from wearable devices [145].

On the one hand, such an abundance of data has helped to advance

artificial intelligence (AI). However, on the other hand, it threatens

the privacy of users and has led to many data breaches [12]. For

this reason, some users may choose to have their data completely

removed from a system, especially sensitive systems such as those

do with finance or healthcare [145]. Recent regulations now com-

pel organisations to give users “the right to be forgotten”, i.e., the

right to have all or part of their data deleted from a system on

request [34, 71].

While removing data from back-end databases satisfies the reg-

ulations, doing so is not sufficient in the AI context as machine

learning models often ‘remember’ the old data. Indeed, in machine

learning systems, often millions, if not billions, of users’ data have

been processed during the model’s training phase. However, un-

like humans who learn general patterns, machine learning models

behave more like a lossy data compression mechanism [152], and

some are overfit against their training data. The success of deep

learning models in particular has been recently been attributed

to the compression of training data [176, 177]. This memorization

behaviour can be further proven by existing works on adversarial

attacks [16, 143, 144], which have shown that it is possible to ex-

tract the private information within some target data from a trained

model. However, we also know that the parameters of a trained

model do not tend to show any clear connection to the data that

was used for training [162]. As a result, it can be challenging to

remove information corresponding to a particular data item from a

machine learning model. In other words, it can be difficult to make

a machine learning model forget a user’s data.

The challenge of enabling users to fully delete their data from

a machine learning model has led to the development of a new

paradigm: machine unlearning [4, 128, 168]. Ideally, a machine un-

learning mechanism would remove data from the model without

requiring complete retraining [128]. This approach upholds users’

right to be forgotten while sparing model owners from frequent

and costly retraining.
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Table 1: Comparison between existing surveys on machine unlearning
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Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[185] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[183] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[160] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[152] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[122] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[204] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
[205] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
[156] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
[123] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Further surveys on machine unlearning for specific domains can be found at https://github.com/tamlhp/awesome-machine-unlearning

Researchers have already begun to study aspects of machine un-

learning, such as removing part of the training data and analysing

the subsequent model predictions [128, 174]. However, it turns out

that this problem cannot be completely solved due to a lack of com-

mon frameworks and resources [152, 160, 183, 185]. Hence, to begin

building a foundation of works in this nascent area, we undertook

a comprehensive survey of machine unlearning: its definitions, sce-

narios, mechanisms, and applications. Our resources are publicly

available at
1
.

1.1 Reasons for Machine Unlearning
There are many reasons for why a users may want to delete their

data from a system. We have categorized these into four major

groups: security, privacy, usability, and fidelity. Each reason is dis-

cussed in more detail next.

Security. Recently, deep learning models have been shown to be

vulnerable to external attacks, especially adversarial attacks [142].

In an adversarial attack, the attacker generates adversarial data

that are very similar to the original data to the extent that a human

cannot distinguish between the real and fake data. This adversarial

data is designed to force the deep learning models into outputting

wrong predictions, which frequently results in serious problems.

For example, in healthcare, a wrong prediction could lead to a

wrong diagnosis, a non-suitable treatment, even a death. Hence,

detecting and removing adversarial data is essential for ensuring

the model’s security and, once an attack is detected, the model

needs to be able delete the adversarial data through a machine

unlearning mechanism [12, 116].

Privacy.Many privacy-preserving regulations have been enacted

recently that involve the right to be forgotten” [10, 34], such as the

EuropeanUnion’s General Data Protection Regulation (GDPR) [115]

and the California Consumer Privacy Act [134]. In this particular

regulation, users must be given the right to have their data and

related information deleted to protect their privacy. In part, this

legislation has sprung up as a result of privacy leaks. For example,

cloud systems can leak user data due to multiple copies of data hold

by different parties, backup policies, and replication strategies [163].

In another case, machine learning approaches for genetic data pro-

cessing were found to leak patients’ genetic markers [48, 194]. It

1
https://github.com/tamlhp/awesome-machine-unlearning

is therefore not surprising that users would want to remove their

data to avoid the risks of a data leak [12].

Usability. People have difference preferences in online applica-

tions and/or services, especially recommender systems. An appli-

cation will produce inconvenient recommendations if it cannot

completely delete the incorrect data (e. g., noise, malicious data,

out-of-distribution data) related to a user. For example, one can

accidentally search for an illegal product on his laptop, and find that

he keeps getting this product recommendation on this phone, even

after he cleared his web browser history [12]. Such undesired usabil-

ity by not forgetting data will not only produce wrong predictions,

but also result in less users.

Fidelity. Unlearning requests might come from biased machine

learning models. Despite recent advances, machine learning models

are still sensitive to bias that means their output can unfairly dis-

criminate against a group of people [120]. For example, COMPAS,

the software used by courts to decide parole cases, is more likely

to consider African-American offenders to have higher risk scores

than Caucasians, even though ethnicity information is not part of

the input [220]. Similar situations have been observed in beauty

contest judged by AI, which was biased against contestants with

darker skin tones, or facial recognition AI that wrongly recognized

Asian facial features [46].

The source of these biases often originate from data. For example,

AI systems that have been trained on public datasets that contain

mostly white persons, such as ImageNet, are likely to make errors

when processing images of black persons. Similarly, in an applica-

tion screening system, inappropriate features, such as the gender or

race of applicants, might be unintentionally learned by the machine

learning model [36, 37]. As a result, there is a need to unlearn these

data, including the features and affected data items.

1.2 Challenges in Machine Unlearning
Before we can truly achieve machine unlearning, several challenges

to removing specific parts of the training data need to be overcome.

The challenges are summarized as follows.

Stochasticity of training. We do not know the impact of each

data point seen during training on the machine learning model

due to the stochastic nature of the training procedure [10]. Neural

networks, for example, are usually trained on random mini-batches

https://github.com/tamlhp/awesome-machine-unlearning
https://github.com/tamlhp/awesome-machine-unlearning
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containing a certain number of data samples. Further, the order of

the training batches is also random [10]. This stochasticity raises

difficulties for machine unlearning as the specific data sample to

be removed would need to be removed from all batches.

Incrementality of training. A model’s training procedure is an

incremental process [10]. In other words, the model update on

a given data sample will affect the model performance on data

samples fed into the model after this data. A model’s performance

on this given data sample is also affected by prior data samples.

Determining a way to erase the effect of the to-be-removed training

sample on further model performance is a challenge for machine

unlearning.

Catastrophic unlearning. In general, an unlearned model usu-

ally performs worse than the model retrained on the remaining

data [127, 128]. However, the degradation can be exponential when

more data is unlearned. Such sudden degradation is often referred

as catastrophic unlearning [127]. While several studies [38, 60]

have explored ways to mitigate catastrophic unlearning by design-

ing special loss functions, how to naturally prevent catastrophic

unlearning is still an open question.

1.3 Contributions of this survey
The aim of this paper is to supply a complete examination of re-

search studies on machine unlearning as well as a discussion on

potential new research directions in machine unlearning. The con-

tributions of our survey can therefore be summarized as follows.

• First, we show how to design an unlearning framework. We

discuss the design requirements, different types of unlearn-

ing requests, and how to verify the unlearned model. The

details can be found in §2.

• Second, we show how to define an unlearning problem in

machine learning systems. This includes the formulation

of exact unlearning and approximate unlearning as well as

the definition of indistinguishability metrics to compare two

given models (i.e., the unlearned model and the retrained

model). The details are discussed in §3.

• Third, we discuss different scenarios of machine unlearning,

including zero-glance unlearning, zero-shot unlearning, and

few-shot unlearning. The details are provided in §4

• Fourth, we introduce a unified taxonomy that categorizes the

machine unlearning approaches into three branches: model-

agnostic methods, model-intrinsic methods, and data-driven

methods. The details can be found in §5.

• Fifth, we compile a variety of regularly used datasets and

open-source implementations to serve as a foundation for

future machine unlearning research and benchmarking. The

details are provided in §6.

• Finally, we highlight the findings, trends and the forthcoming

according to our survey in §8. §9 then completes the paper.

1.4 Differences between this and previous
surveys

Table 1 summarizes the differences between our survey and ex-

isting efforts to unify the field. It is noteworthy that machine un-

learning is different from data deletion [54]. Some works focus on

exploring theoretical foundations or subcategories of unlearning

techniques [156, 205]. Both topics concern the right to be forgotten

legislated and exercised across the world [115]. However, the latter

focuses only on the data perspective following the General Data

Protection Regulation (GDPR) [186], while machine unlearning also

addresses privacy problems from a model perspective.

There are some other concepts that might be mistaken as ma-

chine unlearning, such as data redaction that aims to poison the

label information of the data to be forgotten inside the model [45].

In other words, it forces the model make wrong predictions about

the forgotten data. Although applicable in some setting, this ap-

proach is not fully compatible with machine unlearning as the

forgotten data has to be known a priori when the original model is

trained [45].

2 UNLEARNING FRAMEWORK
2.1 Unlearning Workflow
The unlearning framework in Fig. 1 presents the typical workflow

of a machine learning model in the presence of a data removal re-

quest. In general, a model is trained on some data and is then used

for inference. Upon a removal request, the data-to-be-forgotten is

unlearned from the model. The unlearned model is then verified

against privacy criteria, and, if these criteria are not met, the model

is retrained, i.e., if the model still leaks some information about the

forgotten data. There are two main components to this process: the

learning component (left) and the unlearning component (right). The
learning component involves the current data, a learning algorithm,

and the current model. In the beginning, the initial model is trained

from the whole dataset using the learning algorithm. The unlearn-

ing component involves an unlearning algorithm, the unlearned

model, optimization requirements, evaluation metrics, and a verifi-

cation mechanism. Upon a data removal request, the current model

will be processed by an unlearning algorithm to forget the corre-

sponding information of that data inside the model. The unlearning

algorithm might take several requirements into account such as

completeness, timeliness, and privacy guarantees. The outcome

is an unlearned model, which will be evaluated against different

performance metrics (e.g., accuracy, ZRF score, anamnesis index).

However, to provide a privacy certificate for the unlearned model,

a verification (or audit) is needed to prove that the model actually

forgot the requested data and that there are no information leaks.

This audit might include a feature injection test, a membership

inference attack, forgetting measurements, etc.

If the unlearned model passes the verification, it becomes a new

model for downstream tasks (e.g., inference, prediction, classifi-

cation, recommendation). Otherwise, the remaining data, i.e., the

original data excluding the data to be forgotten, needs to be used

to retrain the model. Either way, the unlearning component will be

called repeatedly upon a new removal request.

2.2 Unlearning Requests
ItemRemoval. Requests to remove certain items/samples from the

training data are the most common requests in machine unlearn-

ing [10]. The techniques used to unlearn these data are described

in detail in §5.

Feature Removal. In many scenarios, privacy leaks might not

only originate from a single data item but also in a group of data
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Figure 1: A Machine Unlearning Framework

with the similar features or labels [196]. For example, a poisoned

spam filter might misclassify malicious addresses that are present in

thousands of emails. Thus, unlearning suspicious emails might not

enough. Similarly, in an application screening system, inappropriate

features, such as the gender or race of applicants, might need to be

unlearned for thousands of affected applications.

In such cases, naively unlearning the affected data items sequen-

tially is imprudent as repeated retraining is computationally ex-

pensive. Moreover, unlearning too many data items can inherently

reduce the performance of the model, regardless of the unlearning

mechanism used. Thus, there is a need for unlearning data at the

feature or label level with an arbitrary number of data items.

Warnecke et al. [196] proposed a technique for unlearning a

group of training data based on influence functions. More precisely,

the effect of training data on model parameter updates is estimated

and formularized in closed-form. As a result of this formulation,

influences of the learning sets act as a compact update instead of

solving an optimisation problem iteratively (e.g., loss minimization).

First-order and second-order derivatives are the keys to computing

this update effectively [196].

Guo et al. [66] proposed another technique to unlearn a feature

based on disentangled representation. The core idea is to learn the

correlation between features from the latent space as well as the

effects of each feature on the output space. Using this information,

certain features can be progressively detached from the learntmodel

upon request, while the remaining features are still preserved to

maintain good accuracy. However, this method is mostly applicable

to deep neural networks in the image domain, in which the deeper

convolutional layers become smaller and can therefore identify

abstract features that match real-world data attributes.

Class Removal. There are many scenarios where the forgetting

data belongs to single or multiple classes from a trained model. For

example, in face recognition applications, each class is a person’s

face so there could potentially be thousands or millions of classes.

However, when a user opts out of the system, their face information

must be removed without using a sample of their face.

Similar to feature removal, class removal is more challenging

than item removal because retraining solutions can incur many

unlearning passes. Even though each pass might only come at a

small computational cost due to data partitioning, the expense

mounts up. However, partitioning data by class itself does not help

the model’s training in the first place, as learning the differences

between classes is the core of many learning algorithms [170].

Although some of the above techniques for feature removal can

be applied to class removal [196], it is not always the case as class

information might be implicit in many scenarios.

Tarun et al. [172] proposed an unlearning method for class re-

moval based on data augmentation. The basic concept is to in-

troduce noise into the model such that the classification error is

maximized for the target class(es). The model is updated by training

on this noise without the need to access any samples of the target

class(es). Since such impair step may disturb the model weights and

degrade the classification performance for the remaining classes, a

repair step is needed to train the model for one or a fewmore epochs

on the remaining data. Their experiments show that the method

can be efficient for large-scale multi-class problems (100 classes).

Further, the method worked especially well with face recognition

tasks because the deep neural networks were originally trained

on triplet loss and negative samples so the difference between the

classes was quite significant [118].

Baumhauer et al. [4] proposed an unlearning method for class

removal based on a linear filtration operator that proportionally

shifts the classification of the samples of the class to be forgotten

to other classes. However, the approach is only applicable to class

removal due to the characteristics of this operator.

Task Removal. Today, machine learning models are not only

trained for a single task but also for multiple tasks. This paradigm,

aka continual learning or lifelong learning [135], is motivated by

the human brain, in which learning multiple tasks can benefit each

other due to their correlations. This technique is also used overcome

data sparsity or cold-start problems where there is not enough data

to train a single task effectively.
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However, in these settings too, there can be a need to remove

private data related to a specific task. For example, consider a robot

that is trained to assist a patient at home during their medical treat-

ment. This robot may be asked to forget this assistance behaviour

after the patient has recovered [101]. To this end, temporarily learn-

ing a task and forgetting it in the future has become a need for

lifelong learning models.

In general, unlearning a task is uniquely challenging as continual

learning might depend on the order of the learned tasks. There-

fore, removing a task might create a catastrophic unlearning effect,

where the overall performance of multiple tasks is degraded in a

domino-effect [101]. Mitigating this problem requires the model

to be aware of that the task may potentially be removed in future.

Liu et al. [101] explains that this requires users to explicitly define

which tasks will be learned permanently and which tasks will be

learned only temporarily.

Stream Removal. Handling data streams where a huge amount of

data arrives online requires some mechanisms to retain or ignore

certain data while maintaining limited storage [169]. In the context

of machine unlearning, however, handling data streams is more

about dealing with a stream of removal requests.

Gupta et el. [67] proposed a streaming unlearning setting in-

volving a sequence of data removal requests. This is motivated by

the fact that many users can be involved in a machine learning

system and decide to delete their data sequentially. Such is also

the case when the training data has been poisoned in an adver-

sarial attack and the data needs to be deleted gradually to recover

the model’s performance. These streaming requests can be either

non-adaptive or adaptive. A non-adaptive request means that the

removal sequence does not depend on the intermediate results of

each unlearning request, whereas and adaptive request means that

the data to be removed depends on the current unlearned model. In

other words, after the poisonous data is detected, the model is un-

learned gradually so as to decide which data item is most beneficial

to unlearn next.

2.3 Design Requirements
Completeness (Consistency).Agood unlearning algorithm should

be complete [12], i.e. the unlearned model and the retrained model

make the same predictions about any possible data sample (whether

right or wrong). One way to measure this consistency is to compute

the percentage of the same prediction results on a test data. This

requirement can be designed as an optimization objective in an

unlearning definition (§3.2) by formulating the difference between

the output space of the two models. Many works on adversarial

attacks can help with this formulation [23, 167].

Timeliness. In general, retraining can fully solve any unlearning

problem. However, retraining is time-consuming, especially when

the distribution of the data to be forgotten is unknown [10, 12]. As

a result, there needs to be a trade-off between completeness and

timeliness. Unlearning techniques that do not use retraining might

be inherently not complete, i.e., theymay lead to some privacy leaks,

even though some provable guarantees are provided for special

cases [64, 116, 126]. To measure timeliness, we can measure the

speed up of unlearning over retraining after an unlearning request

is invoked.

It is also worth recognizing the cause of this trade-off between

retraining and unlearning. When there is not much data to be

forgotten, unlearning is generally more beneficial as the effects on

model accuracy are small. However, when there is much forgetting

data, retraining might be better as unlearning many times, even

bounded, may catastrophically degrade the model’s accuracy [12].

Accuracy. An unlearned model should be able to predict test sam-

ples correctly. Or at least its accuracy should be comparable to

the retrained model. However, as retraining is computationally

costly, retrained models are not always available for comparison.

To address this issue, the accuracy of the unlearned model is of-

ten measured on a new test set, or it is compared with that of the

original model before unlearning [72].

Light-weight. To prepare for unlearning process, many techniques

need to store model checkpoints, historical model updates, training

data, and other temporary data [10, 72, 102]. A good unlearning

algorithm should be light-weight and scale with big data. Any other

computational overhead beside unlearning time and storage cost

should be reduced as well [10].

Provable guarantees.With the exception of retraining, any un-

learning process might be inherently approximate. It is practi-

cal for an unlearning method to provide a provable guarantee

on the unlearned model. To this end, many works have designed

unlearning techniques with bounded approximations on retrain-

ing [64, 116, 126]. Nonetheless, these approaches are founded on

the premise that models with comparable parameters will have

comparable accuracy.

Model-agnostic. An unlearning process should be generic for

different learning algorithms and machine learning models [10],

especially with provable guarantees as well. However, as machine

learning models are different and have different learning algorithms

as well, designing a model-agnostic unlearning framework could

be challenging.

Verifiability. Beyond unlearning requests, another demand by

users is to verify that the unlearned model now protects their pri-

vacy. To this end, a good unlearning framework should provide

end-users with a verification mechanism. For example, backdoor

attacks can be used to verify unlearning by injecting backdoor sam-

ples into the training data [166]. If the backdoor can be detected in

the original model while not detected in the unlearned model, then

verification is considered to be a success. However, such verification

might be too intrusive for a trustworthy machine learning system

and the verification might still introduce false positive due to the

inherent uncertainty in backdoor detection.

2.4 Unlearning Verification
The goal of unlearning verification methods is to certify that one

cannot easily distinguish between the unlearned models and their

retrained counterparts [174].While the evaluationmetrics (§6.3) are

theoretical criteria for machine unlearning, unlearning verification

can act as a certificate for an unlearned model. They also include

best practices for validating the unlearned models efficiently.

It is noteworthy that while unlearning metrics (in §3.1) and

verification metrics share some overlaps, the big difference is that

the former can be used for optimization or to provide a bounded

guarantee, while the latter is used for evaluation only.
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Feature Injection Test. The goal of this test is to verify whether

the unlearned model has adjusted the weights corresponding to

the removed data samples based on data features/attributes [79].

The idea is that if the set of data to be forgotten has a very distinct

feature distinguishing it from the remaining set, it gives a strong

signal for the model weights. However, this feature needs to be

correlated with the labels of the set to be forgotten, otherwise the

model might not learn anything from this feature.

More precisely, an extra feature is added for each data item

such that it is equal to zero for the remaining set and is perfectly

correlated with the labels of the set to forget. Izzo et al. [79] applied

this idea with linear classifiers, where the weight associated with

this extra feature is expected to be significantly different from zero

after training. After the model is unlearned, this weight is expected

to become zero. As a result, the difference of this weight can be

plotted before and after unlearning as a measure of effectiveness of

the unlearning process.

One limitation of this verification method is that the current

solution is only applicable for linear and logistic models [79]. This

is because these models have explicit weights associated with the

injected feature, whereas, for other models such as deep learning,

injecting such a feature as a strong signal is non-trivial, even though

the set to be forgotten is small. Another limitation to these types of

methods is that an injected version of the data needs to be created so

that the model can be learned (either from scratch or incrementally

depending on the type of the model).

Forgetting Measuring. Even after the data to be forgotten has

been unlearned from the model, it is still possible for the model to

carry detectable traces of those samples [80]. Jagielski et al. [80]

proposed a formal way to measure the forgetfulness of a model via

privacy attacks. More precisely, a model is said to𝛼-forget a training

sample if a privacy attack (e.g., a membership inference) on that

sample achieves no greater than success rate 𝛼 . This definition is

more flexible than differential privacy because a training algorithm

is differentially private only if it immediately forgets every sample it

learns. As a result, this definition allows a sample to be temporarily

learned, and measures how long until it is forgotten by the model.

Information Leakage.Many machine learning models inherently

leak information during the model updating process [23]. Recent

works have exploited this phenomenon by comparing the model

before and after unlearning to measure the information leakage.

More precisely, Salem et al. [148] proposed an adversary attack in

the image domain that could reconstruct a removed sample when

a classifier is unlearned on a data sample. Brockschmidt et al. [211]

suggested a similar approach for the text domain. Chen et al. [23]

introduced a membership inference attack to detect whether a

removed sample belongs to the learning set. Compared to previous

works [149, 161], their approach additionally makes use of the

posterior output distribution of the original model, besides that of

the unlearned model. Chen et al. [23] also proposed two leakage

metrics, namely the degradation count and the degradation rate.

• The degradation count: is defined as the ratio between the

number of target samples whose membership can be inferred

by the proposed attack with higher confidence compared to

traditional attacks and the total number of samples.

• The degradation rate: is defined the average improvement

rate of the confidence of the proposed attack compared to

traditional attacks.

Membership InferenceAttacks.This kind of attack is designed to
detect whether a target model leaks data [23, 161, 175]. Specifically,

an inference model is trained to recognise new data samples from

the training data used to optimize the target model. In [161], a set

of shallow models were trained on a new set of data items different

from the one that the target model was trained on. The attack model

was then trained to predict whether a data item belonged to the

training data based on the predictions made by shallow models for

training as well as testing data. The training set for the shallow and

attack models share similar data distribution to the target model.

Membership inference attacks are helpful for detecting data leaks.

Hence, they are useful for verifying the effectiveness of the machine

unlearning [23].

Backdoor attacks. Backdoor attacks were proposed to inject back-
doors to the data for deceiving a machine learning model [187]. The

deceived model makes correct predictions with clean data, but with

poison data in a target class as a backdoor trigger, it makes incorrect

predictions. Backdoor attacks were used to verify the effectiveness

of machine unlearning in [166, 167]. Specifically, the setting begins

with training a model that has a mixture of clean and poison data

items across all users. Some of the users want their data deleted.

If the users’ data are not successfully deleted, the poison samples

will be predicted as the target class. Otherwise, the model will not

predict the poison samples as the target class. However, there is no

absolute guarantee that this rule is always correct, although one

can increase the number of poison samples to make this rule less

likely to fail.

Slow-down attacks. Some studies focus on the theoretical guar-

antee of indistinguishability between an unlearned and a retrained

models. However, the practical bounds on computation costs are

largely neglected in these papers [116]. As a result, a new threat has

been introduced tomachine unlearning where poisoning attacks are

used to slow down the unlearning process. Formally, let ℎ0 = 𝐴(𝐷)
be an initial model trained by a learning algorithm 𝐴 on a dataset

𝐷 . The goal of the attacker is to poison a subset 𝐷𝑝𝑜𝑖𝑠𝑜𝑛 ⊂ 𝐷 such

as to maximize the computation cost of removing 𝐷𝑝𝑜𝑖𝑠𝑜𝑛 from

ˆℎ using an unlearning algorithm 𝑈 . Marchant et al. [116] defined

and estimated an efficient computation cost for certifying removal

methods. However, generalizing this computation cost for different

unlearning methods is still an open research direction.

Interclass Confusion Test. The idea of this test is to investigate

whether information from the data to be forgotten can still be

inferred from an unlearned model [58]. Different from traditional

approximate unlearning definitions that focus on the indistinguisha-

bility between unlearned and retrained models in the parameter

space, this test focuses on the output space. More precisely, the

test involves randomly selecting a set of samples 𝑆 ⊂ 𝐷 from two

chosen classes in the training data 𝐷 and then randomly swapping

the label assignment between the samples of different classes to

result in a confused set 𝑆 ′. Together 𝑆 ′ and𝐷 \𝑆 form a new training

dataset 𝐷′
, resulting in a new trained model. 𝑆 ′ is considered to be

the forgotten data. From this, Goet et al. [58] computes a forgetting
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score from a confusion matrix generated by the unlearned model.

A lower forgetting score means a better unlearned model.

Federated verification. Unlearning verification in federated learn-

ing is uniquely challenging. First, the participation of one or a

few clients in the federation may subtly change the global model’s

performance, making verification in the output space challenging.

Second, verification using adversarial attacks is not applicable in the

federated setting because it might introduce new security threats

to the infrastructure [53]. As a result, Gao et al. [53] proposes a

verification mechanism that uses a few communication rounds for

clients to verify their data in the global model. This approach is

compatible with federated settings because the model is trained in

the same way where the clients communicate with the server over

several rounds.

Cryptographic proofs. Since most of existing verification frame-

works do not provide any theoretical guarantee, Eisenhofer et

al. [44] proposed a cryptography-informed protocol to compute

two proofs, i.e. proof of update (the model was trained on a par-

ticular dataset 𝐷) and proof of unlearning (the forget item 𝑑 is

not a member of 𝐷). The core idea of the proof of update is using

SNARK [7] data structure to commit a hash whenever the model is

updated (learned or unlearned) while ensuring that: (i) the model

was obtained from the remaining data, (ii) the remaining data does

not contain any forget items, (iii) the previous forget set is a subset

of the current forget set, and (iv) the forget items are never re-added

into the training data. The core idea of the proof of unlearning is

using the Merkle tree to maintain the order of data items in the

training data so that an unlearned item cannot be added to the

training data again. While the approach is demonstrated on SISA

(efficient retraining) [10], it is applicable for any unlearning method.

3 UNLEARNING DEFINITION
3.1 Problem Formulation
While the application of machine unlearning can originate from

security, usability, fidelity, and privacy reasons, it is often formu-

lated as a privacy preserving problem where users can ask for the

removal of their data from computer systems and machine learning

models [10, 54, 57, 154]. The forgetting request can be motivated

by security and usability reasons as well. For example, the models

can be attacked by adversarial data and produce wrong outputs.

Once these types of attacks are detected, the corresponding adver-

sarial data has to be removed as well without harming the model’s

predictive performance.

When fulfilling a removal request, the computer system needs

to remove all user’s data and ‘forget’ any influence on the models

that were trained on those data. As removing data from a database

is considered trivial, the literature mostly concerns how to unlearn

data from a model [64, 79, 126, 182].

To properly formulate an unlearning problem, we need to intro-

duce a few concepts. First, let us denoteZ as an example space, i.e.,

a space of data items or examples (called samples). Then, the set

of all possible training datasets is denoted as Z∗
. One can argue

that Z∗ = 2
Z

but that is not important, as a particular training

dataset 𝐷 ∈ 𝑍 ∗
is often given as input. Given 𝐷 , we want to get

a machine learning model from a hypothesis spaceH . In general,

the hypothesis spaceH covers the parameters and the meta-data

Table 2: Important notations

Symbols Definition

Z example space

𝐷 the training dataset

𝐷𝑓 forgetting set (the data to be forgotten)

𝐷𝑟 = 𝐷 \𝐷𝑓 retained set (the remaining data)

𝐴(.) a learning algorithm

𝑈 (.) an unlearning algorithm

H hypothesis space of models

𝑤 = 𝐴(𝐷 ) Parameters of the model trained on 𝐷 by𝐴

𝑤𝑟 = 𝐴(𝐷𝑟 ) Parameters of the model trained on 𝐷𝑟 by𝐴

𝑤𝑢 = 𝑈 (.) Parameters of the model unlearned by𝑈 (.)

of the models. Sometimes, it is modeled asW×Θ, whereW is the

parameter space and Θ is the metadata/state space. The process of

training a model on 𝐷 in the given computer system is enabled by

a learning algorithm, denoted by a function 𝐴 : Z∗ → H , with the

trained model denoted as 𝐴(𝐷).
To support forgetting requests, the computer system needs to

have an unlearning mechanism, denoted by a function𝑈 , that takes

as input a training dataset 𝐷 ∈ 𝑍 ∗
, a forget set 𝐷 𝑓 ⊂ 𝐷 (data

to forget) and a model 𝐴(𝐷). It returns a sanitized (or unlearned)

model 𝑈 (𝐷,𝐷 𝑓 , 𝐴(𝐷)) ∈ H . The unlearned model is expected to

be the same or similar to a retrained model 𝐴(𝐷 \𝐷 𝑓 ) (i.e., a model

as if it had been trained on the remaining data). Note that 𝐴 and

𝑈 are assumed to be randomized algorithms, i.e., the output is

non-deterministic and can be modelled as a conditional probability

distribution over the hypothesis space given the input data [116].

This assumption is reasonable as many learning algorithms are

inherently stochastic (e.g., SGD) and some floating-point operations

involve randomness in computer implementations [10]. Another

note is that we do not define the function 𝑈 precisely before-hand

as its definition varies with different settings.

Table 2 summarizes important notations.

3.2 Exact Unlearning (Perfect Unlearning)
The core problem of machine unlearning involves the comparison

between two distributions of machine learning models [10, 11, 173].

Let 𝑃𝑟 (𝐴(𝐷)) define the distribution of all models trained on a

dataset 𝐷 by a learning algorithm 𝐴(.). Let 𝑃𝑟 (𝑈 (𝐷,𝐷 𝑓 , 𝐴(𝐷))) be
the distribution of unlearned models. The reason why the output

of 𝑈 (.) is modelled as a distribution rather than a single point is

that learning algorithms 𝐴(.) and unlearning algorithms𝑈 (.) are
randomized as mentioned above.

Definition 1 (Exact unlearning - special case). Given a learn-
ing algorithm 𝐴(.), a dataset 𝐷 , and a forget set 𝐷 𝑓 ⊆ 𝐷 , we say the
process𝑈 (.) is an exact unlearning process iff:

𝑃𝑟 (𝐴(𝐷 \ 𝐷 𝑓 )) = 𝑃𝑟 (𝑈 (𝐷, 𝐷 𝑓 , 𝐴(𝐷))) (1)

Two key aspects can be drawn from this definition. First, the

definition does not require that the model 𝐴(𝐷) be retrained from

scratch on 𝐷 \ 𝐷 𝑓 . Rather, it requires some evidence that it is

likely to be a model that is trained from scratch on 𝐷 \𝐷 𝑓 . Second,
two models trained with the same dataset should belong to the

same distribution. However, defining this distribution is tricky. So

to avoid the unlearning algorithm being specific to a particular

training dataset, we have a more general definition [11, 57]:
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Definition 2 (Exact unlearning - general case). Given a
learning algorithm 𝐴(.), we say the process𝑈 (.) is an exact unlearn-
ing process iff ∀T ⊆ H , 𝐷 ∈ 𝑍 ∗, 𝐷 𝑓 ⊂ 𝐷 :

𝑃𝑟 (𝐴(𝐷 \ 𝐷 𝑓 ) ∈ T ) = 𝑃𝑟 (𝑈 (𝐷, 𝐷 𝑓 , 𝐴(𝐷)) ∈ T ) (2)

This definition allows us to define a metric space the models

belong to (and consequently for the distributions). A model can

be viewed either as just a mapping of inputs to outputs in which

case 𝑃𝑟 (.) are distributions over a function space (i.e., continuous

function with the supremummetric), or as the specific parameters 𝜽
for a model architecture, in which case 𝑃𝑟 (.) are distributions over
the weight space (e.g., some finite dimensional real vector space

with the Euclidean norm). This ambiguity leads to two notions of

exact unlearning:

• Distribution of weights: Eq. 2 implies the zero difference in

the distribution of weights, i.e., 𝑃𝑟 (𝑤𝑟 ) = 𝑃𝑟 (𝑤𝑢 ), where the
parameters of models𝑤𝑟 learned by 𝐴(𝐷𝑟 ) and𝑤𝑢 are the

parameters of the models given by𝑈 (.).
• Distribution of outputs: Eq. 2 implies zero difference in the

distribution of outputs, i.e., 𝑃𝑟 (𝑀 (𝑋 ;𝑤𝑟 )) = 𝑃𝑟 (𝑀 (𝑋 ;𝑤𝑢 )),
∀𝑋 ⊆ Z, where𝑀 (.) is the parameterized mapping function

from the input spaceZ to the output space (i.e., the machine

learning model). This definition is sometimes referred to as

weak unlearning [4].

If the unlearning mechanism 𝑈 (.) is implemented as retraining

itself, equality is absolutely guaranteed. For this reason, retraining

is sometimes considered to be the only exact unlearning method.

However, retraining inherently involves high computation costs, es-

pecially for large models [173]. Another disadvantage of retraining

is that it cannot deal with batch settings, where multiple removal

requests happen simultaneously or are grouped in a batch.

There are many different metrics for comparing numerical dis-

tributions over the output space and the weight space. However,

doing so is expensive (e.g., generating a sample in these distribu-

tions involves training the whole model). To mitigate this issue,

some approaches design an alternative metric on a point basis to

compute the distance between two models, either in the output

space or in the weight space [161].

3.3 Approximate Unlearning
(Bounded/Certified Unlearning)

Approximate unlearning approaches attempt to address these cost-

related constraints. In lieu of retraining, these strategies: perform

computationally less costly actions on the final weights [63, 64, 154];

modify the architecture [4]; or filter the outputs [4]. Approximate

unlearning relaxes Def. 2 as follows [64].

Definition 1 (𝜖-Approximate Unlearning). Given 𝜖 > 0, an un-

learning mechanism 𝑈 performs 𝜖-certified removal for a learning

algorithm 𝐴 if ∀T ⊆ H , 𝐷 ∈ 𝑍 ∗, 𝑧 ∈ 𝐷 :

𝑒−𝜖 ≤ 𝑃𝑟 (𝑈 (𝐷, 𝑧,𝐴(𝐷)) ∈ T )
𝑃𝑟 (𝐴(𝐷 \ 𝑧) ∈ T ) ≤ 𝑒𝜖 (3)

where 𝑧 is the removed sample.

It is noteworthy that Eq. 3 defines the bounds on a single sample

𝑧 only. It is still an open question as to whether constant bounds

can be provided for bigger subsets of 𝐷 . Moreover, the reason why

we have the [𝑒−𝜖 , 𝑒𝜖 ] bounds is that the probability distributions

are often modeled by log functions, in which Eq. 3 is equivalent to:

−𝜖 ≤ log [𝑃𝑟 (𝑈 (𝐷, 𝑧,𝐴(𝐷)) ∈ T ) − 𝑃𝑟 (𝐴(𝐷 \ 𝑧) ∈ T )] ≤ 𝜖 (4)

or:

log | |𝑃𝑟 (𝑈 (𝐷, 𝑧,𝐴(𝐷)) ∈ T ) − 𝑃𝑟 (𝐴(𝐷 \ 𝑧) ∈ T )| | ≤ 𝜖 (5)

where | |.| | is an absolute distance metric on the weight space or

the output space. A relaxed version of 𝜖-approximate unlearning is

also defined in [126]:

Definition 3 ((𝜖 ,𝛿)-Approximate Unlearning). Given 𝜖, 𝛿 >

0, an unlearning mechanism 𝑈 performs 𝜖-certified removal for a
learning algorithm 𝐴 if ∀T ⊆ H , 𝐷 ∈ 𝑍 ∗, 𝑧 ∈ 𝐷 :

𝑃𝑟 (𝑈 (𝐷, 𝑧,𝐴(𝐷)) ∈ T ) ≤ 𝑒𝜖𝑃𝑟 (𝐴(𝐷 \ 𝑧) ∈ T ) + 𝛿 (6)

and

𝑃𝑟 (𝐴(𝐷 \ 𝑧) ∈ T ) ≤ 𝑒𝜖𝑃𝑟 (𝑈 (𝐷, 𝑧,𝐴(𝐷)) ∈ T ) + 𝛿 (7)

In other words, 𝛿 upper bounds the probability for the max-

divergence bound in Eq. 3 to fail.

Relationship to differential privacy. Differential privacy states

that:

∀T ⊆ H , 𝐷, 𝐷′
: 𝑒−𝜖 ≤ 𝑃𝑟 (𝐴(𝐷) ∈ T )

𝑃𝑟 (𝐴(𝐷 \ 𝑧) ∈ T ) ≤ 𝑒𝜖 (8)

where 𝑧 is the removed sample. Differential privacy implies ap-

proximate unlearning: deleting the training data is not a concern

if algorithm 𝐴 never memorises it in the first place [64]. However,

this is exactly the contradiction between differential privacy and

machine unlearning. If 𝐴 is differentially private for any data, then

it does not learn anything from the data itself [10]. In other words,

differential privacy is a very strong condition, and most differen-

tially private models suffer a significant loss in accuracy even for

large 𝜖 [1, 17].

3.4 Indistinguishability Metrics
To compare the two models in Def. 2, we need to define a distance

metric 𝑑 (.) between 𝑃𝑟 (𝐴(𝐷 \𝐷 𝑓 ) ∈ T ) and 𝑃𝑟 (𝑈 (𝐷,𝐷 𝑓 , 𝐴(𝐷)) ∈
T ) (∀T ⊆ H ) in either the weight (parameter) space or the output

space. To this end, several distance metrics have been studied:

ℓ2-distance.Wu et al. [201] proposed using a Euclidean norm to

compare the weights of 𝐴(𝐷𝑟 ) and the weights of𝑈 (𝐷,𝐷 𝑓 , 𝐴(𝐷)).
This is also termed as verification error [201]. Despite being sim-

ple, this metric has several limitations: (1) It is costly to compute

this verification error as we need to also calculate 𝐴(𝐷𝑟 ) (through
naive retraining). If the computational cost is cheap, machine un-

learning is not necessary in the first place. (2) It is possible for two

models having same training set and initialisation to have differ-

ent weights [81] due to training stochasticity and uncertainties in

floating-point operations. Therefore, it is quite tricky to define a

threshold for this error.

KLDivergence.The Kullback-Leiber (KL) divergence or the Jensen-
Shannon divergence is a popular distance metric between two

distributions. Golatkar et al. [60] considered this divergence to

measure the distance between two models in the parameter space.

Although it might not require computing 𝐴(𝐷𝑟 ), it is necessary to

have final distributions of models train on 𝐷𝑟 for computing the

divergence. Distribution modeling is non-trivial and might involve

sampling of many models trained on 𝐷𝑟 as well.
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Weight Leakage. Some studies measure privacy leaks of the re-

moved sample 𝑧 from the parameters of the unlearned model [43, 64,

154]. These works assume that a model’s weight distribution does

not leak information about 𝑧 if it was not trained on 𝑧. However,

measuring this privacy leakage is non-trivial and only well-defined

for special classes of models. Guo et al. [64] proposed such a metric

for linear classifiers via gradients. More precisely, a model 𝑤∗
is

trained on 𝐷 if the gradient ∇𝐿(𝐷 ;𝑤∗) = 0, where 𝐿(.) is an empir-

ical risk (loss) of a linear model. This is because argmin𝑤 𝐿(𝐷 ;𝑤)
is uniquely determined for such 𝐿(.). As a result, if the gradient
∇𝐿(𝐷 \ 𝑧;𝑤𝑢 ), where𝑤𝑢 is the parameters of the model returned

by 𝑈 , is non-zero then the model either does not finish training

or is not trained on 𝐷 \ 𝑧. The former case can be safely ignored

as we are not interested in non-converged models. However, the

latter case indirectly implies that the model was trained on a dataset

that included 𝑧, and thus it reveals some information about 𝑧. As a

result, the gradient ∇𝐿(𝐷 \ 𝑧;𝑤𝑢 ) becomes an objective function

for minimizing (or providing a bound) in those works [64, 154].

Although this metric does provide an efficient way to verify the

unlearning result, the above assumptions are not always correct

from a numerical perspective, especially for non-linear models [67].

Using these metrics also requires access to the remaining data as

well as the loss function, which are not always available.

4 OTHER UNLEARNING SCENARIOS
Beside the exact unlearning and approximate unlearning settings,

there are other settings where access to the data, whether they are

to be forgotten or retained, is restricted for security reasons.

4.1 Zero-glance Unlearning
Traditional privacy settings in machine unlearning assume there is

access to all the training data before forgetting. Tarun et al. [172]

proposed to work in a stricter setting where once the user had made

a request to forgetting their data (for example, their face in a facial

recognition model), the organization could not use those samples

even for the purposes of model weight manipulation. Formally, the

zero-glance setting means that the unlearning algorithm uses only

the retained data:

𝑤𝑢 = 𝑈 (𝐷𝑟_𝑠𝑢𝑏 , 𝐴(𝐷)) (9)

where 𝑤𝑢 is the unlearned model and 𝐷𝑟_𝑠𝑢𝑏 ⊆ 𝐷𝑟 is a subset of

samples drawn from the retained dataset 𝐷𝑟 = 𝐷 \𝐷 𝑓 . The smaller

the 𝐷𝑟_𝑠𝑢𝑏 , the better the privacy.

Error-maximizing noise. Unlearning without knowing the data

to be forgotten is non-trivial. Tarun et al. [172] relaxed the setting

somewhat by defining a set of classes to be forgotten, which should

be completely removed from the organization. More precisely, given

a sample 𝑥 and class label 𝑦 ∈ 𝐶 , and a set of classes𝐶 = {1, . . . , 𝐾},
the training data 𝐷 is now a set of pairs (𝑥,𝑦). Let 𝐶𝑓 denote the
set of classes that needs to be forgotten by the model, and let 𝐷 𝑓
be the data collection the classes to be forgotten belong to. The

unlearned model is computed as:𝑤𝑢 = 𝑈 (𝐷𝑟_𝑠𝑢𝑏 ,𝐶𝑓 , 𝐴(𝐷)).
Tarun et al. [172] proposed learning a noise matrix for the classes

to be forgotten𝐶𝑓 by maximizing the model’s loss. In other words, a

set of noise samplesN are generated from𝐶𝑓 ,𝐴(𝐷) to approximate

the data to be forgotten 𝐷 𝑓 . Then, the model 𝐴(𝐷) is trained for

1 epoch on 𝐷𝑟_𝑠𝑢𝑏 ∪ N to damage the model parameters on the

forgotten classes, thus inducing unlearning. After that, the impaired

model is trained for 1 epoch on 𝐷𝑟_𝑠𝑢𝑏 so as to repair any damage

on the retained classes. Sometimes, it takes more epochs or a larger

𝐷𝑟_𝑠𝑢𝑏 to enhance the unlearned model’s performance. This is also

a way to trade the advantages between retraining and unlearning

(accuracy vs. time), which is not available in naive retraining.

In simple terms, existing methods for zero-glance unlearning

try to transform the problem into its original form, where 𝑤𝑢 =

𝑈 (𝐷, 𝐷 𝑓 , 𝐴(𝐷)) by generating an approximate version of 𝐷 𝑓 .

4.2 Zero-shot Unlearning
If the training data is not accessible by an unlearning method 𝑈 ,

the scenario becomes zero-shot unlearning. That is, the unlearning

objective in Def. 2 becomes:

𝑃𝑟 (𝐴(𝐷 \ 𝐷 𝑓 ) ∈ T ) ≈ 𝑃𝑟 (𝑈 (𝐷 𝑓 , 𝐴(𝐷)) ∈ T ) (10)

However, it is non-trivial to solve this problem in generic cases.

Similar to the zero-glance unlearning, Chundawat et al. [29] studied

such a setting for classification with classes to be forgotten with the

idea being that the outputs of the unlearned model should resemble

those of a retrained model. That is, the unlearning objective they

want to achieve was: for some 𝑋 ⊂ Z:

𝑀 (𝑋 ;𝑤𝑢 ) ≈ 𝑀 (𝑋 ;𝑤𝑟 ) (11)

where𝑤𝑟 = 𝐴(𝐷 \ 𝐷 𝑓 ) and𝑤𝑢 = 𝑈 (𝐶𝑓 , 𝐴(𝐷)). Note that the data
to be forgotten 𝐷 𝑓 is not accessible to the unlearning algorithm

𝑈 (.). But, rather, as𝐶 is a generally available information,𝑈 (.) has
access to the retained classes 𝐶𝑟 = 𝐶 \𝐶𝑓 .
Error-minimization noise. Chundawat et al. [29] reused error-

maximizing noise of [172] to generate an impaired version of 𝐷 𝑓
such that the model parameters of 𝐴(𝐷) are damaged when being

trained on those noise samples. To handle the lack of access to

retain data, Chundawat et al. [29] proposed error-minimizing noise

to generate an approximate version of 𝐷𝑟 such that the impaired

model could be trained to mitigate the performance degradation.

Gated knowledge transfer. Unfortunately, the above error max-

min approach yields poor unlearning outcomes as the generated

noise is somewhat adhoc. Hence, inspired by [124], Chundawat et

al. [29] proposed a knowledge distillation mechanism with a crucial

trick: a special type of ‘gate’ is introduced to deny any knowledge

of the classes to be forgotten 𝐶𝑓 so as to prevent a teacher model

from passing knowledge to a student model.

4.3 Few-shot Unlearning
Few-shot unlearning is actually more similar to zero-glance setting

rather than the zero-shot setting in that the unlearning algorithm

only receives a small portion of the data to be forgotten 𝐷 𝑓 . More

specifically, the unlearned model is computed as:

𝑤𝑢 = 𝑈 (𝐷, 𝐷 𝑓 _𝑠𝑢𝑏 , 𝐴(𝐷)) (12)

where 𝐷 𝑓 _𝑠𝑢𝑏 ⊆ 𝐷 𝑓 . This setting is useful for cases where the set

to be forgotten𝐷 𝑓 contains mislabeled data or one wants to remove

some data’s malicious effects on a model. However, access to 𝐷 𝑓
can be undermined [207] due to privacy regulations. Also, in most

cases, 𝐷 𝑓 _𝑠𝑢𝑏 is much smaller than 𝐷 𝑓 , i.e., 𝐷 𝑓 _𝑠𝑢𝑏 ≪ |𝐷 𝑓 |.
Model inversion. Yoon et al. [207] introduced a framework for

few-shot unlearning on the basis of model inversion. First, a proxy

for the learning set is retrieved from the given model via a model
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inversion mechanism. Second, a filtration method eliminates some

of the retrieved data that may be responsible for the undesirable

behaviour while interpolating the few target samples. Finally, the

filtered data is used within a relearning process.

The proposed framework even works on stricter setting where

the unlearning process can not access the original training data,

i.e.,𝑤𝑢 = 𝑈 (𝐷 𝑓 _𝑠𝑢𝑏 , 𝐴(𝐷)) [207] . However, it is only applicable to

classification models with a cross-entropy loss.

Influence approximation. Peste et al. [138] proposed an unlearn-

ing process based on influence functions. The existing efficient

influence-based unlearning process needs the calculation and the

inverse of the Hessian matrix of loss from the model to determine

the impact of any sample. However, those mentioned operations

on the Hessian matrix are extremely costly, especially for high-

dimensional models. Peste et al. [138] approximated it by using an

empirical Fisher Information Matrix (FIM), which uses rank-one

updates to allow easy computation and fast matrix inversion. As

only the to-be-removed data is accessible and erasing the samples

is simple via closed-form updates, those approximations gain a

significant practical advantage.

5 UNLEARNING ALGORITHMS
Asmentioned in the Section 1, machine unlearning can remove data

and data linkages without retraining the machine learning model

from scratch, saving time and computational resources [21, 191].

The specific approaches of machine unlearning can be categorized

into model-agnostic, model-intrinsic, and data-driven approaches.

5.1 Model-Agnostic Approaches
Model-agnostic machine unlearning methodologies include un-

learning processes or frameworks that are applicable to different

models. However, in some cases, theoretical guarantees are only

provided for a class of models (e.g., linear models). Nonetheless,

they are still considered to be model-agnostic as their core ideas

are applicable to complex models (e.g. deep neural networks) with

practical results.

Differential Privacy. Differential privacy was first proposed to

bound a data sample’s influence on a machine learning model [42].

𝜖-differential privacy unlearns a data sample by setting 𝜖 = 0, where

𝜖 bounds the level of change in any model parameters affected by

that data sample [10, 173]. However, Bourtoule et al. [10] notes

that the algorithm cannot learn from the training data in such a

case. Gupta et el. [67] proposed a differentially private unlearning

mechanism for streaming data removal requests. These requests are

adaptive as well, meaning the data to be removed depends on the

current unlearned model. The idea, which is based on differential

privacy, can be roughly formulated as:

Pr(𝑈 (𝐷, 𝑠,𝐴(𝐷)) ∈ T ) ≤ 𝑒𝜖𝑃𝑟 (𝐴(𝐷 \ 𝑠) ∈ T ) + 𝛽 (13)

for all adaptive removal sequences 𝑠 = (𝑧1, . . . , 𝑧𝑘 ). One weakness
of this condition is that it only guarantees the upper bound of the un-

learning scheme compared to full retraining. However, its strength

is that it supports a user’s belief that the system has engaged in

full retraining. Finally, an unlearning process is developed by a no-

tion of differentially private publishing functions and a theoretical

reduction from adaptive to non-adaptive sequences. Differentially

private publishing functions guarantee that the model before and

after an unlearning request do not differ too much [47].

Certified Removal Mechanisms. Unlearning algorithms falling

into this category are the ones following the original approximate

definition of machine unlearning [60, 64]. While Guo et al. [64]

focus on theoretical guarantees for linear models and convex losses,

Golatkar et al. [60] introduce a computable upper bound for SGD-

based learning algorithms, especially deep neural networks. The

core idea is based on the notion of perturbation (noise) to mask

the small residue incurred by the gradient-based update (e.g., a

one-step Newton update [91]). The idea is applicable to other cases,

although no theoretical guarantees are provided [10].

More precisely, certified removal mechanisms mainly accommo-

date those linearmodels that minimize a standardized empirical risk,

which is the total value of a convex loss function that measures the

distance of the actual value from the expected one [116]. However,

one has to rely on a customized learning algorithm that optimizes

a perturbed version of the regularized empirical risk, where the

added noise is drawn from a standard normal distribution. This nor-

malized noise allows conventional convex optimization techniques

to solve the learning problem with perturbation. As a result, the

unlearning request can be done by computing the model perturba-

tion towards the regularized empirical risk on the remaining data.

The final trick is that this perturbation can be approximated by the

influence function [91], which is computed by inverting the Hessian

on training data and the gradient of the data to be forgotten [116].

However, the error of model parameters in such a computation can

be so large that the added noise cannot mask it. Therefore, if the

provided theoretical upper bound exceeds a certain threshold, the

unlearning algorithm resorts to retraining from scratch [116].

Following this idea, Neel et al. [126] provided further extensions,

namely regularized perturbed gradient descent and distributed per-

turbed gradient descent, to support weak convex losses and provide

theoretical guarantees on indistinguishability, accuracy, and un-

learning times.

Ullah et al. [182] continued studying machine unlearning in the

context of SGD and streaming removal requests. They define the

notation of total variation stability for a learning algorithm:

sup

𝐷,𝐷 ′
: |𝐷\𝐷 ′ |+|𝐷 ′\𝐷 |

Δ(𝐴(𝐷), 𝐴(𝐷′)) ≤ 𝜌 (14)

where Δ(.) is the largest possible difference between the two prob-

abilities such that they can assign to the same event, aka total

variance distance [184]. This is also a special case of the optimal

transportation cost between two probability distributions [95]. In

other words, a learning algorithm 𝐴(.) is said to be 𝜌-TV-stable if

given any two training datasets 𝐷 and 𝐷′
, as long as they have 1

common data item, the cost of transporting from the model distri-

bution𝐴(𝐷) to𝐴(𝐷′) is bounded by 𝜌 . For any 1/𝑛 ≤ 𝜌 < ∞, Ullah

et al. [182] proved that there exists an unlearning process that satis-

fies exact unlearning at any time in the streaming removal request

while the model accuracy and the unlearning time are bounded

w.r.t. 𝜌 .

Statistical Query Learning. Statistical query learning is a form

of machine learning that trains models by querying statistics on

the training data rather than itself [12]. In this form, a data sample

can be forgotten efficiently by recomputing the statistics over the
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Table 3: Comparison of unlearning methods
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Model-agnostic
Differential privacy [47, 67] ✗ ✓ – – – ✓ ✓ – ✓ ✓ – ✓ ✗ ✗ ✗ ✓

Certified removal [60, 64, 126, 182] – ✓ ✗ ✗ – – ✓ ✓ ✓ ✓ – ✓ ✗ ✗ ✗ ✓

Statistical query learning [12] – ✓ ✗ – ✗ ✓ ✓ – ✓ – – ✓ ✗ ✗ ✗ –

Decremental learning [25, 57] ✗ – ✗ – – ✗ ✓ ✓ – – – ✓ ✗ ✗ ✗ ✗

Knowledge adaptation [28, 89, 192, 215] ✗ ✓ – – – – – – ✗ ✗ – ✓ – – – –

Parameter sampling [128] ✗ ✓ ✓ ✗ – – – – – – – ✓ ✗ ✗ ✗ ✗

Model-intrinsic
Softmax classifiers [4] ✗ ✓ ✓ ✗ – ✓ – – ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗

Linear models [79, 99] ✓ ✗ ✗ – ✗ – ✓ – ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Tree-based models [153, 203] ✗ – ✗ – ✗ ✗ – ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Bayesian models [127] – ✓ ✗ ✗ ✗ – – ✓ – ✓ – ✓ ✗ ✗ ✗ ✗

DNN-based models [3, 59, 61, 62, 72, 121, 214] ✗ ✓ ✗ ✗ ✗ - - ✓ - - - ✓ ✗ ✗ ✗ ✗

Data-driven
Data partition [2, 10, 41] ✓ ✗ ✓ ✗ ✓ ✓ ✗ – ✗ ✓ ✓ ✓ ✗ – ✗ –

Data augmentation [75, 157, 172, 208] ✗ ✓ ✗ ✗ ✗ – – – – ✗ – – ✗ ✓ ✗ ✗

Data influence [14, 138, 212] ✗ ✓ ✗ ✓ – – ✓ – ✓ ✓ – ✓ ✗ ✗ ✗ ✗

✓: fully support ✗: no support –: partially or indirectly support []: representative citations

remaining data [10]. More precisely, statistical query learning as-

sumes that most of the learning algorithms can be represented as

a sum of some efficiently computable transformations, called sta-

tistical queries [87]. These statistical queries are basically requests

to an oracle (e.g., a ground truth) to estimate a statistical function

over all training data. Cao et al. [12] showed that this formulation

can generalize many algorithms for machine learning, such as the

Chi-square test, naive Bayes, and linear regression. For example, in

naive Bayes, these statistical queries are indicator functions that

return 1 when the output is a target label and zero otherwise [12]. In

the unlearning process, these queries are simply recomputed over

the remaining data. The approach is efficient as these statistical

functions are computationally efficient in the first place. Moreover,

statistical query learning also supports adaptive statistical queries,

which are computed based on the prior state of the learning mod-

els, including k-means, SVM, and gradient descent. Although this

time, the unlearning update makes the model not convergent any

more, only a few learning iterations (adaptive statistical queries)

are needed since the model starts from an almost-converged state.

Moreover, if the old results of the summations are cached, say, via

dynamic programming, then the speedup might be even higher.

The limitation of this approach is that it does not scale with

complex models such as deep neural networks. Indeed, in complex

models, the number of statistical queries could become exponen-

tially large [10], making both the unlearning and relearning steps

less efficient.

In general, statistical query learning supports item removal and

can be partially applied to stream removal [67] as well, although

the streaming updates to the summations could be unbounded.

It supports exact unlearning, but only partially when the statisti-

cal queries are non-adaptive. It also partially supports zero-shot

unlearning, because only the statistics over the data need to be

accessed, not the individual training data items.

Decremental Learning. Decremental learning algorithms were

originally designed to remove redundant samples and reduce the

training load on the processor for support vectormachines (SVM) [15,

25, 39, 146, 180, 181] and linear classification [84, 85, 179]. As such,

they focus on accuracy rather than the completeness of the machine

unlearning.

Ginart et al. [57] developed decremental learning solutions for

𝑘-means clustering based on quantization and data partition. The

idea of quantization is to ensure that small changes in the data do

not change the model. Quantization helps to avoid unnecessary

unlearning so that accuracy is not catastrophically degraded. How-

ever, it is only applicable when there are few model parameters

compared to the size of the dataset. The idea behind the data parti-

tioning is to restrict the data’s influence on the model parameters

to only a few specific data partitions. This process helps to pinpoint

the effects of unlearning to a few data features. But, again, the ap-

proach is only effective with a small number of features compared

to the size of the dataset. Notably, data privacy and data deletion

are not completely correlative [57]. Data privacy does not have to

ensure data deletion (e.g., differential privacy), and data deletion

does not have to ensure data privacy.

Knowledge Adaptation (Knowledge Distillation). Knowledge
adaptation selectively removes to-be-forgotten data samples [28].

In this approach [28], one trains two neural networks as teachers

(competent and incompetent) and one neural network as a student.

The competent teacher is trained on the complete dataset, while
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the incompetent teacher is randomly initialised. The student is

initialised with the competent teacher’s model parameters. The stu-

dent is trained to mimic both competent teacher and incompetent

teacher by a loss function with KL-divergence evaluation values

between the student and each of the two teachers. Notably, the

competent teacher processes the retained data and the incompetent

teacher deals with the forgotten data.

Beyond Chundwat et al. [28], machine learning models have

been quickly and accurately adapted by reconstructing the past

gradients of knowledge-adaptation priors in [88]. Ideas similar to

knowledge-adaptation priors were also investigated in [57, 202].

Lin et al. [100] introduce ERM-KTP, a knowledge-level machine

unlearning framework that leverages knowledge transfer to erase

specific learned information while maintaining model performance.

Wang et al. [192] propose KGA, a general machine unlearning frame-

work that aligns knowledge gaps between original and unlearned

models for efficient data removal. Zhang et al. [215] present a sto-

chastic teacher network method for unlearning, which trains the

model to forget specific data points through stochastic processes.

Kim et al. [89] develop Layer Attack Unlearning, a fast and accurate

method that uses layer-level attack and knowledge distillation to

remove sensitive information frommachine learning models. Lastly,

Bonato et al. [9] investigate the impact of out-of-distribution im-

ages on unlearning models, proposing that retaining certain sets of

data can help restore performance in unlearned models. In general,

knowledge adaptation is applicable to a wide range of unlearning re-

quests and scenarios. However, it is difficult to provide a theoretical

guarantee for this approach.

MCMC Unlearning (Parameter Sampling). Sampling-based ma-

chine unlearning has also been suggested as a way to train a stan-

dard machine learning model to forget data samples from the train-

ing data [128]. The idea is to sample the distribution of model

parameters using Markov chain Monte Carlo (MCMC). It is as-

sumed that the forgetting set is often significantly smaller than

the training data (otherwise retraining might be a better solution).

Thus, the parameter distribution 𝑃𝑟 (𝑤𝑟 ) of the retrained models

should not differ much from that of the original model 𝑃𝑟 (𝑤). In
other words, the posterior density 𝑃𝑟 (𝑤𝑟 |𝐷) should be sufficient

large for sampling [128]. More precisely, the posterior distribution

from the retrained parameters can be defined as:

𝑃𝑟 (𝑤𝑟 |𝐷) ≈ 𝑃𝑟 (𝑤 |𝐷) ∝ 𝑃𝑟 (𝐷 |𝑤)𝑃𝑟 (𝑤) (15)

Here, the prior distribution 𝑃𝑟 (𝑤) is often available from the learn-

ing algorithm, which means the stochasticity of learning via sam-

pling can be estimated. The likelihood 𝑃𝑟 (𝐷 |𝑤) is the prediction
output of the model itself, which is also available after training.

From Eq. 15, we only know that the density function of 𝑃𝑟 (𝑤 |𝐷)
is proportional to a function 𝑓 (𝑤) = 𝑃𝑟 (𝐷 |𝑤)𝑃𝑟 (𝑤), which means

𝑃𝑟 (𝑤 |𝐷) cannot be directly sampled. This is where MCMC comes

into play, as it can still generate the next samples using a pro-

posal density 𝑔(𝑤 ′ |𝑤) [128]. However, 𝑔(𝑤 ′ |𝑤) is assumed to be a

Gaussian distribution centered on the current sample (the sampling

process can be initialized with the original model).

As a result, a candidate set of model parameters 𝑃𝑟 (𝑤𝑟 |𝐷) is con-
structed from the sampling, and the unlearning output is calculated

by simply maximizing the posterior probability 𝑃𝑟 (𝑤 |𝐷𝑟 ), i.e.:
𝑤𝑟 = argmax

𝑤
𝑃𝑟 (𝑤 |𝐷𝑟 ) (16)

The benefit of such sampling-based unlearning is that no access to

the forgetting set is required.

5.2 Model-Intrinsic Approaches
The model-intrinsic approaches include unlearning methods de-

signed for a specific type of models. Although they are model-

intrinsic, their applications are not necessarily narrow, as many

machine learning models can share the same type.

Unlearning for softmax classifiers (logit-based classifiers).
Softmax (or logit-based) classifiers are classification models 𝑀 :

Z → R𝐾 that output a vector of logits 𝑙 ∈ R𝑘 , where 𝐾 is the

number of classes, for each data sample 𝑥 ∈ Z. The core task of

𝑀 (𝑥) is to estimate the probability distribution 𝑃𝑟 (𝑋,𝑌 ), where
𝑋 is the random variable in X, and 𝑌 is the random variable in

1, . . . , 𝐾 , such that:

𝑃𝑟 (𝑌 = 𝑖 |𝑋 = 𝑥) ≈ 𝜎 (𝑙𝑖 ) (17)

Here, 𝜎 (𝑙𝑖 ) =
exp(𝑙𝑖 )∑
𝑗=1..𝐾 exp 𝑙 𝑗

is the softmax function. This formula-

tion applies to logistic regression and deep neural networks with

a densely connected output layer using softmax activations [4].

Baumhauer et al. [4] proposed an unlearning method for softmax

classifiers based on a linear filtration operator to proportionally

shift the classification of the to-be-forgetten class samples to other

classes. However, this approach is only works for class removal.

Unlearning for linear models. Izzo et al. [79] proposed an ap-

proximate unlearning method for linear and logistic models based

on influence functions. They approximated a Hessian matrix com-

putation with a project residual update [14, 79] that combines gra-

dient methods with synthetic data. It is suitable for forgetting small

groups of points out of a learned model. Some other studies con-

sider an online setting for machine unlearning (aka online data

deletion) [57, 99], in which the removal request is a sequence of

entries that indicates which data item is to be unlearned. In gen-

eral, this setting is more challenging than normal setting because

indistinguishability must hold for any entry and for the end of

the deletion sequence. The goal is to achieve a lower bound on

amortized computation time [57, 99].

Li et al. [99] formulated a special case of the online setting where

data is only accessible for a limited time so there is no full training

process in the first place. More precisely, the system is allowed a

constant memory to store historical data or a data sketch, and it

has to make predictions within a bounded period of time. Although

the data to be forgotten can be unlearned from a model on-the-fly

using a regret scheme on the memory, this particular unlearning

process is only applicable to ordinary linear regression [99].

Unlearning for Tree-based Models. Tree-based models are clas-

sification techniques that partition the feature space recursively,

where the features and cut-off thresholds to split the data are de-

termined by some criterion, such as information gain [153, 203].

There is a class of tree-based models, called extremely randomized

trees [56], that are built by an ensemble of decision trees. These

are very efficient because the candidate set of split features and

cut-off thresholds are randomly generated. The best candidate is
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selected by a reduction in Gini impurity, which avoids the heavy

computation of logarithms.

Schelter et al. [153] proposed an unlearning solution for ex-

tremely randomized trees by measuring the robustness of the split

decisions. A split decision is robust if removing 𝑘 data items does

not reverse that split. Note that 𝑘 can be bounded, and it is often

small as only one in ten-thousand users who wants to remove their

data at a time [153]). The learning algorithm is redesigned such

that most of splits, especially the high-level ones, are robust. For

the non-robust splits, all subtree variants are grown from all split

candidates and maintained until a removal request would revise

that split. When that happens, the split is switched to its variant

with higher Gini gain. As a result, the unlearning process involves

recalculating the Gini gains and updating the splits if necessary.

One limitation of this approach is that if the set to be forgotten

is too large, there might be many non-robust splits. This would

lead to high storage costs for the subtree variants. However, it does

give a parameterized choice between unlearning and retraining.

If there are many removal requests, retraining might be the best

asymptotically. Alternatively, onemight limit themaximumnumber

of removal requests to be processed at a time. Moreover, tree-based

models have a highly competitive performance for many predictive

applications [153].

Unlearning for BayesianModels.Bayesianmodels are probabilis-

tic models that approximate a posterior likelihood [49, 50, 82, 127].

Also known as Bayesian inference, this process is particularly use-

ful when a loss function is not well-defined or does not even exist.

Bayesian models cover a wide range of machine learning algo-

rithms, such as Bayesian neural networks, probabilistic graphical

models, generative models, topic modeling, and probabilistic matrix

factorization [137, 147, 213].

Unlearning for Bayesian models requires a special treatment, as

the training already involves optimizing the posterior distribution

of the model’s parameters. It also often involves optimizing the

Kullback-Leibler divergence between a prior belief and the posterior

distribution [127]. Nguyen et al. [127] proposed the notion of exact
Bayesian learning:

𝑃𝑟 (𝑤 |𝐷𝑟 ) = 𝑃𝑟 (𝑤 |𝐷)𝑃𝑟 (𝐷 𝑓 |𝐷𝑟 )/𝑃𝑟 (𝐷 𝑓 |𝑤) ∝ 𝑃𝑟 (𝑤 |𝐷)/𝑃𝑟 (𝐷 𝑓 |𝑤)
(18)

where 𝑃𝑟 (𝑤 |𝐷𝑟 ) is the distribution of a retrained model (as if

it were trained only on 𝐷𝑟 ). However, the posterior distribution

𝑃𝑟 (𝑤 |𝐷𝑟 ) can only be sampled directly when the model parame-

ters are discrete-valued (quantized) or the prior is conjugate [127].

For non-conjugate priors, Nguyen et al. [127] proved that we can

approximate 𝑃𝑟 (𝑤 |𝐷𝑟 ) by minimizing the KL divergence between

𝑃𝑟 (𝑤 |𝐷) and 𝑃𝑟 (𝑤 |𝐷𝑟 ). Since 𝑃𝑟 (𝑤 |𝐷) is the original model’s pa-

rameter distribution, this approximation prevents catastrophic un-

learning. As such, the retained model performs significantly better

than the unlearned model in terms of accuracy.

A notion of certified Bayesian unlearning has also been studied,

where the KL divergence between the unlearned model and the

retrained model is bounded [49, 50, 82]:

𝐾𝐿(𝑃𝑟 (𝐴(𝐷𝑟 )), E
𝐴(𝐷 )

𝑃𝑟 (𝑈 (𝐷, 𝐷 𝑓 , 𝐴(𝐷)))) ≤ 𝜖 (19)

Here, the result of the unlearning process is an expectation over

the parameter distribution of the original model 𝐴(𝐷) ∼ 𝑃𝑟 (𝑤 |𝐷).

This certification can be achieved for some energy functions when

formulating the evidence lower bound (ELBO) in Bayesian mod-

els [49, 50, 82].

Unlearning for DNN-based Models. Deep neural networks are

advanced models that automatically learn features from data. As a

result, it is very difficult to pinpoint the exact model update for each

data item [60–62, 72, 121]. Fortunately, deep neural networks con-

sist of multiple layers. For layers with convex activation functions,

existing unlearning methods such as certified removal mechanisms

can be applied [14, 64, 126, 154]. For non-convex layers, Golatkar

et al. [59, 61] proposed a caching approach that trains the model

on data that are known a priori to be permanent. Then the model

is fine-tuned on user data using some convex optimization.

Sophisticated unlearning methods for DNNs rely primarily on

influence functions [91, 214]. Here, Taylor expansions are used

to approximate the impact of a data item on the parameters of

black-box models [212]. Some variants include DeltaGrad [201],

which stores the historical updates for each data item, and Fisher-

based unlearning [60], which we discussed under §5.1). However,

influence functions in deep neural networks are not stable with a

large forget set [3, 113, 114].

More precisely, after the data to be forgotten has been deleted

from database, Fisher-based unlearning [60] works on the remain-

ing training data with the Newton’s method, which uses a second-

order gradient. To mitigate potential information leaks, noise is in-

jected into the model’s parameters [30]. As the Fisher-based method

aims to approximate the model without the deleted data, there can

be no guarantee that all the influence of the deleted data has been

removed. Although injecting noise can help mitigate information

leaks, the model’s performance may be affected by the noise [30].

Golatkar et al. [60] point out that the Hessian computation in

certified removal mechanisms is too expensive for complex models

like deep neural networks. Hence, they resorted to an approxima-

tion of Hessian via Levenberg-Marquardt semi-positive-definite

approximation, which turns out to correspond with the Fisher In-

formation Matrix [117]. Although it does not provide a concrete

theoretical guarantee, Fisher-based unlearning could lead to further

information-theoretic approaches to machine unlearning [61, 66].

5.3 Data-Driven Approaches
Data Partitioning (Efficient Retraining). The approaches falling
into this category uses data partitioningmechanisms to speed up the

retraining process. Alternatively, they partially retrain the model

with some bounds on accuracy. Bourtoule et al. [10] proposed the

well-known SISA framework (Fig. 2) that partitions the data into

shards and slices. Each shard has a single model, and the final output

is an aggregation of multiple models over these shards. For each

slice of a shard, a model checkpoint is stored during training so that

a new model can be retrained from an intermediate state [2, 10].

Dukler et al. [41] partition the training data into disjoint shards

and builds a graph structure to track dependencies between shards

and model updates. When data is requested to be forgotten, the

system efficiently removes the effects of specific shards by rolling

back and recalculating model updates only for affected shards.

Data Augmentation (Error-manipulation noise).Data augmen-

tation is the process of enriching or adding more data to support a
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Figure 2: Efficient retraining for machine unlearning using
data partition

model’s training [208]. Such mechanisms can be used to support

machine unlearning as well. Huang et al. [75] proposed the idea

of error-minimizing noise, which tricks a model into thinking that

there is nothing to be learned from a given set of data (i.e., the

loss does not change). However, it can only be used to protect a

particular data item before the model is trained. A similar setting

was also studied by Fawkes [157], in which a targeted adversarial

attack is used to ensure the model does not learn anything from a

targeted data item.

Conversely, Tarun et al. [172] proposed error-maximizing noise

to impair the model on a target class of data (to be forgotten).

However, this tactic does not work on specific data items as it is

easier to interfere with a model’s prediction on a whole class as

opposed to a specific data item of that class [172].

Data influence. This group of unlearning approaches studies how

a change in training data impacts a model’s parameters [14, 30,

199], where impact is computed using influence functions [29, 114].

However, influence functions depend on the current state of a

learning algorithm [199]. To mitigate this issue, several works store

a training history of intermediate quantities (e.g., model parameters

or gradients) generated by each step of model training [63, 126, 201,

202]. Then, the unlearning process becomes one of subtracting these

historical updates. However, the model’s accuracy might degrade

significantly due to catastrophic unlearning [127] since the order

in which the training data is fed matters to the learning model.

Moreover, the influence itself does not verify whether the data to

be forgotten is still included in the unlearned model [173, 174].

Zeng et al. [212] suggested a new method of modeling data in-

fluence by adding regularization terms into the learning algorithm.

Although this method is model-agnostic, it requires intervening

in the original training process of the original model. Moreover,

it is only applicable to convex learning problems and deep neural

networks. Peste et al. [138] closed this gap by introducing a new

Fisher-based unlearning method, which can approximate the Hes-

sian matrix. This method works for both shallow and deep models,

and also convex and non-convex problems. The idea is to efficiently

compute the matrix inversion of a Fisher Information Matrix using

rank-one updates. However, as the whole process is approximate,

there is no concrete guarantee on the unlearned model.

Yamasita et al. [206] propose a one-shot unlearning technique

that removes the need for extra training by adding noise to the

model’s sensitive parameters, estimated using the Fisher informa-

tion matrix (FIM). Unlike existing methods, this approach does

not require retaining training data for FIM calculation. Instead, it

utilizes class-specific synthetic signals, or mnemonic codes, dur-

ing training. Each class is assigned a mnemonic code, which is

incorporated into the training data as:

𝑥𝑖 = (1 − 𝜆)𝑥𝑖 + 𝜆𝜉𝑐 (20)

where 𝜆𝜉𝑐 represents the mnemonic codes and 𝜆 is the hyperpa-

rameter. This eliminates the need to retain training data for the

unlearning process, reducing storage costs and enhancing practi-

cality.

6 PUBLISHED RESOURCES ON MACHINE
UNLEARNING

6.1 Published Unlearning Algorithms
Some implementations of algorithms and models are available that

have contributed to baseline experiments in machine unlearning. A

summary of published implementations, including their language

and platform details, the corresponding models, and URLs to their

code repositories, are presented in Table 4.

6.2 Published Datasets
The most widely used datasets in machine unlearning are shown

in Table 5. We have classified these into several groups based on

their field of application, including image, tabular, text, sequence,

and graph. Due to the space limit, the details of these datasets can

be found in our technical report [130].

6.3 Evaluation Metrics
The most often used metrics for measuring anomaly detection per-

formance include accuracy, completeness, unlearn time, distance,

and forgetting scores. Their formulas and common usage are sum-

marized in Table 6. More detailed descriptions are given below.

Accuracy. In machine unlearning, a model’s accuracy needs to be

compared on three different datasets: (1) The set to be forgotten.

Since the expected behaviour of an unlearned model should mirror

that of a retrainedmodel, the accuracy on the remaining data should

be similar to the retrained model. (2) The retained set. The retained

set’s accuracy should be close to that of the original model. (3)

The test set. The unlearned model should still perform well on a

separate test dataset compared to the retrained model.

Completeness. The influence of the to-be-removed samples on

the unlearned model must be completely eliminated. Complete-

ness, hence, measures the degree to which an unlearned model is

compatible with a retrained model [12]. If the unlearned model

gives similar predictions to a retrained model for all samples, the

operation of feeding samples or observing the model’s information

is impractical to achieve the forgotten data and its lineage. The final

metric is often calculated as the overlap of output space (e.g., the

Jaccard distance) between the unlearned model and the retraining.

However, computing this metric is often exhaustive.

Unlearning time and Retraining time. Timeliness quantifies

the time saved when using unlearning instead of retraining for

model update. The quicker the system restores privacy, security,

and usefulness, the more timely the unlearning process. In particu-

lar, retraining uses the whole training set to execute the learning

algorithm, whereas unlearning executes the learning algorithm on
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Table 4: Published Algorithms and Models

Unlearning Algorithms Language Platform Applicable ML Models Code Repository

SISA [10] Python - Model-agnostic https://github.com/cleverhans-lab/machine-unlearning

Athena [166, 167] Python - Model-agnostic https://github.com/inspire-group/unlearning-verification

AmnesiacML [63] Python - Model-agnostic https://github.com/lmgraves/AmnesiacML

Kpriors [88] Python Pytorch Model-agnostic https://github.com/team-approx-bayes/kpriors

ERM [126] Python - Model-agnostic https://github.com/ChrisWaites/descent-to-delete

ShallowAttack [23] Python Pytorch Model-agnostic https://github.com/MinChen00/UnlearningLeaks

UnrollingSGD [173] Python - Model-agnostic https://github.com/cleverhans-lab/unrolling-sgd

DeltaGrad [201] Python - Model-agnostic https://github.com/thuwuyinjun/DeltaGrad

Amnesia [152] Rust - Model-agnostic https://github.com/schelterlabs/projects-amnesia

SCAR [9] Python - Model-agnostic https://github.com/jbonato1/SCAR

KGA [192] Python Pytorch Model-agnostic https://github.com/Lingzhi-WANG/KGAUnlearn

MUPy [12] Python LensKit kNN https://github.com/theLauA/MachineUnlearningPy

DelKMeans [57] Python - kMeans https://github.com/tginart/deletion-efficient-kmeans

CertifiedRem [64] Python Pytorch Linear models https://github.com/facebookresearch/certified-removal

CertAttack [116] Python Tensorflow Linear models https://github.com/ngmarchant/attack-unlearning

PRU [79] Python - Linear models https://github.com/zleizzo/datadeletion

DeltaBoost [203] Python - Tree-based models https://github.com/Xtra-Computing/DeltaBoost

HedgeCut [153] Python - Tree-based models https://github.com/schelterlabs/hedgecut

DaRE-RF [11] Python - Tree-based models https://github.com/jjbrophy47/dare_rf

MCMC-Unlearning [49] Python Pytorch Bayesian models https://github.com/fshp971/mcmc-unlearning

BIF [50] Python Pytorch Bayesian models https://github.com/fshp971/BIF

L-CODEC [121] Python, Matlab Pytorch Deep learning https://github.com/vsingh-group/LCODEC-deep-unlearning

SelectiveForgetting [60, 61] Python - Deep learning https://github.com/AdityaGolatkar/SelectiveForgetting

Neurons [33] Python - Deep learning https://github.com/Hunter-DDM/knowledge-neurons

Unlearnable [75] Python - Deep learning https://github.com/HanxunH/Unlearnable-Examples

DLMA [208] Python - Deep learning https://github.com/AnonymousDLMA/MI_with_DA

ERM-KTP [100] Python Pytorch Deep learning https://github.com/RUIYUN-ML/ERM-KTP

GraphProjector [32] Python - Graph Learning https://github.com/CongWeilin/Projector

GraphEditor [30] Python - Graph Learning https://anonymous.4open.science/r/GraphEditor-NeurIPS22-856E/README.md

FedLU [219] Python Pytorch Graph Learning https://github.com/nju-websoft/FedLU/

GUIDE [189] Python - Graph Learning https://github.com/Happy2Git/GUIDE

GNNDelete [26] Python - Graph Learning https://github.com/mims-harvard/GNNDelete

GraphEraser [24] Python - Graph Learning https://github.com/MinChen00/Graph-Unlearning

GST-Unlearn [132] Python - Graph Learning https://zenodo.org/records/7613150

RecEraser [18] Python, C++ - Recommender Systems https://github.com/chenchongthu/Recommendation-Unlearning

ADV-MULTVAE [51] Python - Recommender Systems https://github.com/CPJKU/adv-multvae

FedEraser [103] Python - Federated Learning https://www.dropbox.com/s/1lhx962axovbbom/FedEraser-Code.zip?dl=0

RapidFed [109] Python - Federated Learning https://github.com/yiliucs/federated-unlearning

SIFU [47] Python PyTorch Federated Learning https://github.com/Accenture/Labs-Federated-Learning/tree/SIFU

Fast-FedUL [78] Python - Federated Learning https://github.com/thanhtrunghuynh93/fastFedUL

FATS [171] Python - Federated Learning https://github.com/Happy2Git/FATS_supplement

EUL [20] Python - LLM https://github.com/SALT-NLP/Efficient_Unlearning

E2URec [190] Python Pytorch LLM, Recommender Systems https://github.com/justarter/E2URec

Ext-Sub [73] Python - LLM https://github.com/HITsz-TMG/Ext-Sub

SP [139] Python - LLM https://github.com/nickypro/selective-pruning

Quark [112] Python - LLM https://github.com/GXimingLu/Quark

I2I-Unlearn [96] Python Pytorch Generative Models https://github.com/jpmorganchase/i2i-generator-unlearning

AdvUnlearn [216] Python - Generative Models https://github.com/OPTML-Group/AdvUnlearn

FAST [133] Python - Generative Models https://github.com/Subhodip123/weak-unlearning-gan

-: No Dedicated Platforms.

a limited amount of summations; hence, the speed of unlearning is

quicker due to the reduced size of the training data.

Relearn time. Relearning time is an excellent proxy for measuring

the amount of unlearned data information left in the model. If a

model recovers its performance on unlearned data with just a few

steps of retraining, it is extremely probable that the model has

retained some knowledge of the unlearned data.

The layer-wise distance. The weight difference between the orig-

inal and unlearned neural networks helps when evaluating the un-

learning impact on each layer [172]. The weight difference should

be comparable to a retrained model given that a shorter distance

indicates ineffective unlearning. Likewise, a much longer distance

may point to a Streisand effect and possible information leaks.

Activation Distance. The activation distance is the separation be-

tween the final activation of the scrubbed weights and the retrained

model. A shorter activation distance indicates superior unlearning.

JS-Divergence.When paired with the activation distance, the JS-

Divergence between the predictions of the unlearned and retrained

model provides a more full picture of unlearning. Less divergence

results in better unlearning. The formula of JS-Divergence is

JS(𝑀 (𝑥),𝑇𝑑 (𝑥)) = 0.5 ∗ KL(𝑀 (𝑥) | |𝑚) + 0.5 ∗ KL(𝑇𝑑 (𝑥) | |𝑚)
where𝑀 is unlearned model,𝑇𝑑 is a competent teacher, and KL is

The Kullback-Leibler divergence [92],𝑚 =
𝑀 (𝑥 )+𝑇𝑑 (𝑥 )

2
.

Membership Inference. The membership inference metric lever-

ages a membership inference attack to determine whether or not

any information about the forgotten samples remains in themodel [23].

The set to be forgotten should have reduced the attack probability

https://github.com/cleverhans-lab/machine-unlearning
https://github.com/inspire-group/unlearning-verification
https://github.com/lmgraves/AmnesiacML
https://github.com/team-approx-bayes/kpriors
https://github.com/ChrisWaites/descent-to-delete
https://github.com/MinChen00/UnlearningLeaks
https://github.com/cleverhans-lab/unrolling-sgd
https://github.com/thuwuyinjun/DeltaGrad
https://github.com/schelterlabs/projects-amnesia
https://github.com/jbonato1/SCAR
https://github.com/Lingzhi-WANG/KGAUnlearn
https://github.com/theLauA/MachineUnlearningPy
https://github.com/tginart/deletion-efficient-kmeans
https://github.com/facebookresearch/certified-removal
https://github.com/ngmarchant/attack-unlearning
https://github.com/zleizzo/datadeletion
https://github.com/Xtra-Computing/DeltaBoost
https://github.com/schelterlabs/hedgecut
https://github.com/jjbrophy47/dare_rf
https://github.com/fshp971/mcmc-unlearning
https://github.com/fshp971/BIF
https://github.com/vsingh-group/LCODEC-deep-unlearning
https://github.com/AdityaGolatkar/SelectiveForgetting
https://github.com/Hunter-DDM/knowledge-neurons
https://github.com/HanxunH/Unlearnable-Examples
https://github.com/AnonymousDLMA/MI_with_DA
https://github.com/RUIYUN-ML/ERM-KTP
https://github.com/CongWeilin/Projector
https://anonymous.4open.science/r/GraphEditor-NeurIPS22-856E/README.md
https://github.com/nju-websoft/FedLU/
https://github.com/Happy2Git/GUIDE
https://github.com/mims-harvard/GNNDelete
https://github.com/MinChen00/Graph-Unlearning
https://zenodo.org/records/7613150
https://github.com/chenchongthu/Recommendation-Unlearning
https://github.com/CPJKU/adv-multvae
https://www.dropbox.com/s/1lhx962axovbbom/FedEraser-Code.zip?dl=0
https://github.com/yiliucs/federated-unlearning
https://github.com/Accenture/Labs-Federated-Learning/tree/SIFU
https://github.com/thanhtrunghuynh93/fastFedUL
https://github.com/Happy2Git/FATS_supplement
https://github.com/SALT-NLP/Efficient_Unlearning
https://github.com/justarter/E2URec
https://github.com/HITsz-TMG/Ext-Sub
https://github.com/nickypro/selective-pruning
https://github.com/GXimingLu/Quark
https://github.com/jpmorganchase/i2i-generator-unlearning
https://github.com/OPTML-Group/AdvUnlearn
https://github.com/Subhodip123/weak-unlearning-gan
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Table 5: Published Datasets (URLs are embedded in dataset names).

Category Dataset #Items Disk Size Downstream Applications REF

Image

MNIST 70K 11MB Classification 29+ papers ([10, 57, 64], . . . )

CIFAR 60K 163MB Classification 16+ papers ([63, 75, 159, 191], . . . )

SVHN 600K 400MB+ Classification 8+ papers([10, 64, 75, 76, 105], . . . )

LSUN [209] 69M+ 1TB+ Classification [64]

ImageNet [35] 14M+ 166GB Classification [10, 53, 72, 75, 166, 167]

Tabular

Adult 48K+ 10MB Classification 8+ papers([11, 23, 103, 108, 153, 161], . . . )

Breast Cancer 569 < 1𝑀𝐵 Classification [52, 199]

Diabetes 442 < 1𝑀𝐵 Regression [11, 25, 196]

Text

IMDB Review 50K 66MB Sentiment Analysis [107]

Reuters 11K+ 73MB Categorization [107]

Newsgroup 20K 1GB+ Categorization [107]

Sequence

Epileptic Seizure 11K+ 7MB Timeseries Classification [28]

Activity Recognition 10K+ 26MB Timeseries Classification [28]

Botnet 72M 3GB+ Clustering [57]

Graph

OGB 100M+ 59MB Classification [27, 31]

Cora 2K+ 4.5MB Classification [22, 27, 31]

MovieLens 1B+ 3GB+ Recommender Systems [152]

REF: Papers that run experiments on the dataset.

in the unlearned model. The chance of an inference attack should

be reduced in the unlearned model compared to the original model

for the forgotten class data.

ZRF (Zero Retrain Forgetting) score. ZRF makes it possible to

evaluate unlearning approaches independent of retraining [28].

The unpredictability of the model’s predictions is measured by

comparing them to an unskilled instructor. ZRF compares the set

to be forgotten’s output distribution to the output of a randomly

initialised model, which in most situations is our lousy instructor.

The ZRF score ranges between 0 and 1; it will be near to 1 if the

model’s behaviour with the forgotten samples is entirely random,

and close to 0 if it exhibits a certain pattern. Formally, ZRF =

1 − 1

𝑛𝑓

𝑛𝑓∑
𝑖=0

JS(𝑀 (𝑥𝑖 ),𝑇𝑑 (𝑥𝑖 )), where 𝑥𝑖 is the 𝑖𝑡ℎ sample from the

set to be forgotten with a total number of samples 𝑛𝑓 .

Anamnesis Index (AIN). AIN values range between 0 and 1. The

better the unlearning, the closer to 1. Instances where information

from the classes to be forgotten are still preserved in the model cor-

relate to AIN levels well below 1. A score closer to 0 also suggests

that the unlearned model will rapidly relearn to generate correct

predictions. This may be due to the fact that the last layers contain

limited reversible modifications, which degrades the performance

of the model on the forgotten classes. If an AIN score is much

greater than 1, it may suggest that the approach causes parameter

changes that are so severe that the unlearning itself may be detected

(Streisand effect). This might be due to the fact that the model was

pushed away from the original point and, as a result, is unable to

retrieve previously learned knowledge about the forgotten class(es).

The formula for calculating an AIN value is 𝐴𝐼𝑁 =
𝑟𝑡 (𝑀𝑢 ,𝑀𝑜𝑟𝑖𝑔,𝛼 )
𝑟𝑡 (𝑀𝑠 ,𝑀𝑜𝑟𝑖𝑔,𝛼 ) ,

where 𝛼% is a margin around the initial precision used to deter-

mine relearn time. 𝑟𝑡 (𝑀,𝑀𝑜𝑟𝑖𝑔, 𝛼) are mini-batches (or steps) to be

achieved by the model𝑀 on the classes to be forgotten within 𝛼%

of the precision compared to the original model𝑀𝑜𝑟𝑖𝑔 .𝑀𝑢 and𝑀𝑠
respectively represent the unlearned model and a model trained

from scratch.

Epistemic Uncertainty. Epistemic uncertainty is an uncertainty

metric that measures how much we know about the optimal hy-

pothesis in the parameter space [77]. That is, are we certain that the

current model parameters are optimal for a given dataset?. The in-

fluence functions are computed as the trace of Fischer Information

Matrix (FIM) [5]:

𝑖 (𝑤 ;𝐷) = 𝑡𝑟 (I(𝑤 ;𝐷)) (21)

where I(𝑤 ;𝐷) is the FIM that determines the quantities of infor-

mation that the model parameters 𝑤 hold regarding the dataset

𝐷 [5], which can be approximate via Levenberg-Marquart [117]:

I(𝑤 ;𝐷) ≈ 1

|𝐷 |
∑︁
𝑥,𝑦∈𝐷

(
𝜕 log𝑝 (𝑦 |𝑥 ;𝑤

𝜕𝑤

)
2

(22)

Becker et al. [5] proposed an efficacy score based on the epistemic

uncertainty as follows.

efficacy(𝑤 ;𝐷) =
{

1

𝑖 (𝑤;𝐷 ) , if i(w;D) > 0

∞, otherwise
(23)

It measures how much information the model exposes. This met-

ric is computationally efficient and does not require access to the

retrained model [5]. A better unlearning algorithm will produce

the unlearned model with lower efficacy score. However, it only

measures the overall information reduction, not the specific infor-

mation related to the data to be forgotten. Moreover, it should be

used along with an accuracy metric, as less exposing models do not

necessarily have good predictive performance [5].

Model Inversion attack. It has been shown that model inversion

attacks may reproduce the records from trained machine learning

models. It is possible to replicate samples of target points around a

regression value if white-box access to a trained model is available.

The data provided from the unlearned model following inversion

should not include information about the forget class. This metric

is qualitative and often used in image applications [63].

7 UNLEARNING APPLICATIONS
7.1 Unlearning in Recommender Systems
In the field of machine learning, recommender systems are used to

predict what a user might want to buy or watch. They often use

collaborative filtering to learn a user’s preferences based on their

past behavior. However, a recommender system may be required to

https://deepai.org/dataset/mnist
https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
https://www.yf.io/p/lsun
https://www.image-net.org
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/breast+cancer
https://archive.ics.uci.edu/ml/datasets/diabetes
https://ai.stanford.edu/~amaas/data/sentiment/
https://keras.io/api/datasets/reuters/
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Epileptic%2BSeizure%2BRecognition
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
https://ogb.stanford.edu/
https://relational.fit.cvut.cz/dataset/CORA
http://konect.cc/networks/
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Table 6: Evaluation Metrics

Evaluation
Metrics

Formula/Description Usage REF

Accuracy Accuracy on unlearned model on forget set and retrain

set

Evaluating the predictive performance of unlearned

model

[29, 59, 60, 172]

Completeness The overlapping (e.g. Jaccard distance) of output space

between the retrained and the unlearned model

Evaluating the indistinguishability between model out-

puts

[12]

Unlearn Time The amount of time of unlearning request Evaluating the unlearning efficiency [12]

Relearn Time The epochs number required for the unlearned model

to reach the accuracy of source model

Evaluating the unlearning efficiency (relearn with some

data sample)

[12, 172]

Layer-wise Dis-

tance

The weight difference between original model and re-

train model

Evaluate the indistinguishability between model param-

eters

[172]

Activation Dis-

tance

An average of the L2-distance between the unlearned

model and retrained model’s predicted probabilities on

the forget set

Evaluating the indistinguishability between model out-

puts

[28, 59]

JS-Divergence Jensen-Shannon divergence between the pre-

dictions of the unlearned and retrained model:

JS(𝑀 (𝑥),𝑇𝑑 (𝑥)) = 0.5 ∗ KL(𝑀 (𝑥) | |𝑚) + 0.5 ∗
KL(𝑇𝑑 (𝑥) | |𝑚)

Evaluating the indistinguishability between model out-

puts

[28]

Membership In-

ference Attack

Recall (#detected items / #forget items) Verify the influence of forget data on the unlearned

model

[59, 63]

ZRF score ZRF = 1 − 1

𝑛𝑓

𝑛𝑓∑
𝑖=0

JS(𝑀 (𝑥𝑖 ),𝑇𝑑 (𝑥𝑖 )) The unlearned model should not intentionally give

wrong output (ZRF = 0) or random output (ZRF =

1) on the forget item

[28]

Anamnesis In-

dex (AIN)

𝐴𝐼𝑁 =
𝑟𝑡 (𝑀𝑢 ,𝑀𝑜𝑟𝑖𝑔,𝛼 )
𝑟𝑡 (𝑀𝑠 ,𝑀𝑜𝑟𝑖𝑔,𝛼 ) Zero-shot machine unlearning [29]

Epistemic Un-

certainty

efficacy(𝑤 ;𝐷) =
{

1

𝑖 (𝑤;𝐷 ) , if i(w;D) > 0

∞, otherwise
How much information the model exposes [5]

Model Inver-

sion Attack

Visualization Qualitative verifications and evaluations [63]

REF: Highlighted papers that used/proposed the metric

forget private training points and its complete impact on a model in

order to protect user privacy or comply with explicit user removal

requests. Utility is another reason for unlearning requests. For

example, the accuracy of a recommendation can be degraded due to

out-of-distribution data or poisoning attacks [38, 116]. In the latter

case, data that is detected as poisoned will need to be removed,

while in the former case, old data may need to be removed so that

the system keeps up with the new data distribution.

Unlearning techniques for machine learning in general cannot

be used directly on recommender systems [18, 188]. For exam-

ple, collaborative filtering recommendation uses the information

of similarity across users-item interaction; and thus, arbitrarily

partitioning the training sets could break such coupling informa-

tion [10]. Some researchers have developed unlearning methods for

graph data [22] and while recommendation data can be modelled

as graphs, their user-item interactions are not uniform [18].

To overcome these challenges, Chen et al. [18] proposed a partition-

based retraining process, called smart retraining, to unlearn the

model from the removed user behavior data. The idea is to develop

a strategy to partition the data with regard to the resemblance

between users and items while maintaining the balance between

different partitions for retraining. Next, the output of the submod-

els is combined using an attention-based method, each of which is

associated with each disjoint partition.

In other settings, Yuan et al. [210] propose FRU, a method to erase

user contributions from federated learning systems using a rollback

mechanism. AltEraser [104] is a fast unlearning technique for neu-

ral recommender systems that employs second-order optimization

to efficiently remove unwanted data without full retraining. Sinha et

al. [165] examine unlearning in multi-modal recommendation sys-

tems, addressing the complexities of handling different data types

and reducing legal risks while optimizing computational efficiency.

Liu et al. [98] explore attribute-wise unlearning to make users in-

distinguishable in recommender systems, enhancing privacy by

eliminating sensitive user attributes.

7.2 Unlearning Federated Learning
Recently, federated learning has become popular in the field of

machine learning [119]. One typical federated learning scenario is

building a machine learning model from healthcare information.

Due to privacy regulations, the medical record data cannot leave

the clients’ devices. Here, the clients could be hospitals or personal

computers and are assumed to have machine learning environ-

ments. The server does not transmit the actual data to the global

model. Rather, there is a communication protocol between the

clients and servers that governs collaborative model training [197].

In the literature, the communication protocol Federated Average

(FedAvg) [119] is typically used for model training. It consists of

multiple rounds. Each round, the current global model weights are

transmitted to the clients. Based on these weights, each client uses

stochastic gradient descent to adjust their local model. Then the lo-

cal model’s weights are forwarded to the server. In the final phase of

each loop, the server aggregates the received weights by (weighted)

averaging to prepare the global model for the next round [68].

Given such training protocols, machine unlearning cannot be

extended easily to the federated learning setting [47, 78, 171]. This



, , Thanh Tam Nguyen, et al.

is because the global weights are computed by aggregations rather

than raw gradients. These are especially mixed up when many

clients participate [53]. Moreover, these clients might have some

overlapping data, making it difficult to quantify the impact of each

training item on the model weights [107]. Using classic unlearning

methods by gradient manipulationmay even lead to severe accuracy

degradation or new privacy threats [103].

Additionally, current studies on federated unlearning tend to as-

sume that the data to be removed belongs wholly to one client [103,

107, 191, 197]. With this assumption, the historical contributions of

particular clients to the global model’s training can be logged and

erased easily. However, erasing historical parameter updates might

still damage the global model, but there are many strategies for

overcoming this issue. For example, Liu et al. [103] proposed cali-

bration training to separate the individual contributions of clients

as much as possible. This mechanism does not work well for deep

neural networks, but it does work well with shallow architectures

such as a 2-layer CNN or a network with two fully-connected layers.

In addition, there is a trade-off between scalability and precision

due to the cost of storing historical information on the federated

server. Wu et al. [197] put forward a knowledge distillation strategy

that uses a prime global model to train the unlearned model on the

remaining data. However, as the clients’ data is not accessible by

the server, some unlabeled (synthetic) data that follows the distri-

bution of the whole dataset needs to be sampled and extra rounds

of information exchange are needed between the clients and server.

As a result, the whole process is costly and approximate. Also, it

might be further offset when the data is non-IID [109]. On another

spectrum, Liu et al. [109] proposed a smart retraining method for

federated unlearning without communication protocols. The ap-

proach uses the L-BFGS algorithm [6, 8] to efficient solve a Hessian

approximation with historical parameter updates for global model

retraining. However, this method is only applicable to small models

(≤ 10K parameters). Plus, it involves storing old model snapshots

(including historical gradients and parameters), which poses some

privacy threats.

Recently, Shaik et al. [155] propose a framework, namely FRAMU,

that uses reinforcement learning to help decentralized agents make

optimal data unlearning decisions based on real-time feedback. By

leveraging attention mechanisms and balancing exploration and

exploitation, the framework ensures continual model adaptation,

improving convergence, privacy preservation, and decision-making

in dynamic, multi-modal environments [93]. Further studies on

federated unlearning can be found at [110, 140, 158, 200].

7.3 Unlearning in Graph Embedding
So far the data in machine unlearning settings is assumed to be in-

dependent. However, there are many cases where the data samples

are relational, such as is the case with graph data. Graph represen-

tation learning is a well-established research direction in machine

learning, specifically in deep learning [19, 69, 94, 111]. However,

applying machine unlearning to graph representation learning is

arguably more challenging. First, the data is correlated, and it is non-

trivial to partition the data, even uniformly. Second, the unlearning

requests can happen upon a node or an edge. Third, the graph data

itself might be non-uniform due to unbalanced connected compo-

nents in the graph. Therefore, existing graph partition methods

might lead to unbalanced data partitions, making the retraining

process non-uniform.

To mitigate these problems, Chen et al. [22] proposed a new

graph partitioning strategies especially for machine unlearning.

The general idea is based on the notion of assignment preference

that represents the benefit of a node assigned to a shard (i.e., a

data partition). Such node-shard pairs are further fine-tuned with

neighbor counts, which track down the number of neighbors of a

node belonging to the same target shard. The authors also proposed

an aggregation method to combine different partition strategies.

Further, the retraining process is based on message passing in graph

neural networks, which facilitates fast retraining.

Unlearning without retraining is also possible for graph embed-

ding. However, several challenges need to be overcome. The inter-

dependency of graph data, especially across different subgraphs, is

non-trivial for model training. A removal of node and edge could

not only cause an impact on its neighbor but also on multi-hops.

Cong et al. [30, 31] proposed a one-shot unlearning solution that

only requires access to the data to be forgotten. The idea is inspired

by the architecture of a linear graph neural network (GNN), in

which non-linearities in a typical GNN are replaced by a single

weight matrix between consecutive convolutional layers. Despite

its linear span over all input node features, such linear-GNNs have

shown competent performance, e.g. SGC [198] and APPNP [55].

Using this property, Cong et al. [30, 31] proposed an exact unlearn-

ing process at the algorithmic level based on linear operations such

as projection and recombination.

Existing graph unlearning methods have two main limitations:

they either degrade model performance by altering weights shared

across all nodes or fail to effectively delete edges due to reliance

on local neighborhoods. To solve this, Cheng et al. [26] introduce

GNNDELETE, which focuses on two components: Deleted Edge

Consistency and Neighborhood Influence. Deleted Edge Consis-

tency ensures that the impact of removed elements is eliminated

from both model weights and adjacent representations. Neighbor-

hood Influence retains residual knowledge even after elements

are removed, allowing GNNDELETE to modify representations to

delete nodes and edges while preserving the remaining knowledge.

Recently, Li et al. [97] propose a mutual evolution framework

for general graph unlearning, which iteratively updates both graph

structures and model parameters to improve unlearning effective-

ness. Zhu et al. [219] introduce a method for heterogeneous fed-

erated knowledge graph embedding learning and unlearning, en-

abling privacy-preserving updates in distributed knowledge graph

systems. Wang et al. [189] present inductive graph unlearning,

which removes nodes and edges from graph models while main-

taining model integrity and scalability in dynamic environments.

Finally, Pan et al. [132] investigate unlearning in graph classifiers

with limited data, developing techniques that minimize the impact

of unlearning on model performance despite constrained resources.

7.4 Unlearning in Lifelong Learning
Unlearning is not always a bad thing for the accuracy of a ma-

chine learning model. Machine unlearning has been researched as
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a countermeasure against catastrophic forgetting in deep neural

networks [38, 101, 136]. Catastrophic forgetting is a phenomenon

where deep neural networks perform badly after learning too many

tasks [90]. One naive solution to this problem is training the model

on the historical data again. Clearly, this solution is impractical

not only due to computational cost but also because there is no

guarantee that the model will converge and nor is there a guaran-

tee that the forgetting will not happen again [135]. Du et al. [38]

suggested a solution based on unlearning to prevent catastrophic

forgetting. The core idea is to unlearn harmful samples (e.g., false

negatives/positives) and then update the model so that its perfor-

mance before the forgetting effect is maintained.

Unlearning has also been used to handle exploding losses in

machine learning. Here, the term loss involves the computation of

− log 𝑃𝑟 (𝑥), and, when 𝑃𝑟 (𝑥) is approximately zero, the loss may

be arbitrarily significant. The problem is more severe in anomaly

detection where normal samples can have very small 𝑃𝑟 (𝑥) (abnor-
mal samples have very large 𝑃𝑟 (𝑥) and their sum of probabilities is

one). Du et al. [38] hence proposed an unlearning method to mit-

igate this problem with an unlearning loss that regularizes those

extreme cases.

Unlearning has been studied for other lifelong settings aswell [136].

These setting use incremental models, such as decision tree and

naive Bayes, which allows the model to unlearn data samples on-

the-fly. Liu et al. [101] considered requests on unlearning specific

tasks for lifelong models. In particular, there are three types of

requests in lifelong learning: (i) to learn a task permanently, (ii) to

learn a task temporarily and forget it later upon a privacy request,

and (iii) to forget a task. Different from traditional machine unlearn-

ing, unlearning in lifelong learning needs to maintain knowledge

transfer between tasks but also preserve all knowledge for the

remaining tasks. Moreover, the setting is more challenging as it

depends on the order of tasks as the tasks are learnt online during

the model lifetime. Additionally, the model cannot keep all previous

data (zero-glance unlearning), making the unlearning process more

challenging. Liu et al. [101] proposed a solution inspired by SISA,

the data partitioning mechanism for smart retraining [10]. It creates

an isolated temporary model for each task and merges the isolated

models into the main model.

7.5 Unlearning in Large Language Models
Unlearning in large language models (LLMs) has become essen-

tial due to increasing privacy concerns and the need to comply

with regulations like GDPR [115] and CCPA [134]. As LLMs are

trained on vast datasets that may include sensitive information,

there is a risk of these models inadvertently memorising and re-

producing private data [83, 193, 218]. Chen et al. [20] introduce an

efficient framework for unlearning in LLMs that integrates light-

weight unlearning layers into transformer models, allowing for

the selective removal of specific data without retraining the entire

model. They also introduce a fusion mechanism to combine these

layers when multiple unlearning requests are made. Kassem [86]

propose another unlearning approach called “DeMem”, which uses

a reinforcement learning feedback loop with a negative similarity

score as a reward. This approach incentivises the language model to

paraphrase memorised content, thereby reducing the risk of sensi-

tive information being exposed.Wang et al. [190] introduce E2URec,

an unlearning method for LLM-based recommender systems. It ad-

dresses forgetting user data while preserving model performance

by updating a small set of parameters using low-rank adaptation

modules and employing a teacher-student framework.

Some works, use machine unlearning as a way to improve the

truthfulness and detoxification of LLMs. Hu et al. [73] propose the

“Extraction-before-Subtraction” (Ext-Sub) method with parameter-

efficient modules (PEMs) to isolate and remove undesirable fea-

tures like untruthfulness or toxicity, while preserving the model’s

core capabilities. The method extracts deficiency capabilities from

“anti-expert” PEMs and subtracts them from “expert” PEMs, en-

hancing performance without compromising fundamental abilities.

Pochinkov et al. [139] introduce another method by selectively

pruning neurons responsible for specific behaviours, such as cod-

ing or toxic language, while maintaining overall performance. Lu et

al. [112] presents a framework called Quark that uses reinforcement

learning as a machine unlearning approach to mitigate undesirable

text generation behaviors, such as toxicity and repetition, while

preserving language quality.

7.6 Unlearning in Generative Models
Machine unlearning has been studied for generative models, such

as diffusion models and adversarial networks. Zhang et al. [216]

propose a method that ensures robust concept erasure in diffusion

models. This approach uses adversarial training to defend against

unwanted model behavior while selectively erasing learned con-

cepts, maintaining the model’s overall functionality. Li et al. [96]

develop techniques to remove specific data representations from

image generators. Unlearncanvas [217], a stylised image dataset

to benchmark unlearning performance in diffusion models, has

been developed. This dataset provides a standard for evaluating the

effectiveness of various unlearning techniques in visual data, em-

phasizing the need for robust testing frameworks. Panda et al. [133]

present FAST, a weak unlearning method for black-box generative

models that uses feature similarity to remove specific learned pat-

terns without significantly impacting model accuracy. Tiwary et

al. [178] explore a strategy that exploits parameter space seman-

tics in GANs to improve unlearning efficiency, enabling models to

adapt to new data while effectively forgetting outdated or undesired

information.

8 DISCUSSION AND FUTURE PROSPECTS
In this section, we analyze the current and potential developments

in machine unlearning and summarize our findings. In addition,

we identify a number of unanswered research topics that could be

addressed to progress the foundation of machine unlearning.

8.1 Summary and Trends
Influence functions are dominant methods. Understanding
the impact of a given data item on a model’s parameters or model

performance is the key to machine unlearning [3, 91]. Such in-

sights will speed-up the unlearning process immensely by simply
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reversing the model updates associated with the target data. Al-

though there could be some offset in doing so, promising results

have shown that this offset can be bounded [29, 113, 114].

Reachability of model parameters. Existing works define un-

learning as obtaining a newmodel with an accuracy as good as if the

model had retrainedwithout the data to be forgotten [60, 61, 63, 174].

We argue that such a parameter-space assumption should be taken

into serious considerations. As model parameters can be reach-

able with or without some given data, is there any case where the

original and unlearned models share the same parameters? [174]

Although some studies use parameter distribution to bound the

problem [64], there could still be false positive cases, where some

effects from the forgotten data still exist in the unlearned model.

Unlearning verification (Data auditing) is needed. Unlearn-
ing verification (or data auditing) is the process of determining

whether specific data have been eliminated from a model. To fully

enable regulations over the right to be forgotten, the unlearning

effect should be independently verified. There have been only a

few works on unlearning verification [53, 76]. However, the defi-

nition of a successful verification is still controversial as different

unlearning solutions use different evaluation metrics, especially

when the cutting threshold of a verification metric still depends on

the application domain [174].

Federated unlearning is emerging. Federated learning brings

about a unique setting for machine unlearning research [103, 107,

191, 197]. It has separate clients participating in the federated train-

ing process. As a result, removing a client out of the federation

could be done precisely using historical updates. The rational be-

hind this is that the user data on a client mostly helps to make

correct predictions about that user. This locality helps to avoid

a catastrophic unlearning phenomenon in a traditional machine

learning setting. However, we all need to be aware that there are

many cases in federated learning where the data is non-IID or the

removal request only covers part of the client data.

Model repair via unlearning.Machine learning models can be

poisoned by adversarial attacks [106, 187]. Intuitively, if the poi-

sonous data is detected and removed and then the model is re-

trained, the new model should be poison-free. However, the retrain-

ing would be too expensive. This is indeed similar to the unlearning

setting. Compared to existing defence methods, the models in ma-

chine learning determine then update the inner problematic weights

through influence functions.

A similar application is to remove bias from the model due to

some biased feature in the data [36, 37]. Status quo studies on

fairness and de-biasing learning mostly focus on learning a fair

and unbiased feature representation [125, 141, 164, 195], where,

machine unlearning, e.g. feature unlearning [66], would ensure the

biased features are deleted properly but the model’s quality would

still be maintained.

In another setting, machine unlearning can be used to repair

overtrained deep neural networks by actively unlearning useless,

obsolete, or redundant data samples that could cause catastrophic

forgetting [38, 60]. Moreover, machine unlearning might be used

to boost the model’s accuracy as well
2
, e.g. as forgetting is similar

to compressing in information bottleneck theory [162, 176, 177]
3
.

8.2 Open Research Questions
There are several open research questions that future studies can

address. This section will list and discuss those fundamental topics

in machine unlearning.

Unified Design Requirements. Among the current unlearning

approaches, there is no absolute winner that satisfies all design

requirements. Most unlearning algorithms focus on approximate

unlearning scenarios and data item removal (Table 3). However,

there are other types of practical unlearning scenarios that need

to be considered, such as zero-glance, zero-shot, few-shot learning.

Likewise, there are other types of removal requests that must be

handled, e.g., feature removal, class removal, task removal, stream

removal, and so on. Moreover, satisfying all design requirements –

completeness, timeliness, accuracy, etc. – would make unlearning

solutions more applicable to industry-grade systems.

Unified Benchmarking. Although there have been many works

on machine unlearning recently, not many of them have a common

setting for benchmarking comparisons. In particular, there is not

a lot of published source code (Table 4) and each of them targets

different learning algorithms or different applications (e.g. recom-

mender systems, graph embedding). Schelter et al. [152] undertook

an empirical study but the benchmark was limited to decremental

learning methods and focused only on efficiency.

Adversarial Machine Unlearning.More studies have focused on

attacking ML systems to improve our understanding and protection

of these systems [142, 183, 187]. Adversarial machine unlearning ex-

amines attacks on unlearning algorithms to better certify unlearned

models [52, 116]. Unlike machine unlearning, which mitigates ad-

versarial attacks [106], adversarial machine unlearning is stricter,

addressing not only model accuracy but also privacy guarantees.

For instance, it may lack knowledge of learning algorithms but still

access the unlearning process.

Interpretable Machine Unlearning. In the future, explanations

for machine unlearning can be used to increase confidence in

human-AI interactions and enable unlearning verification or re-

moved data auditing [53, 76]. However, the inverted nature of ma-

chine unlearning might pose problems for explanation methods

to be applicable at all. Devising techniques aimed at explaining

the unlearning process (e.g. using influence functions) is still an

unsolved task [3, 91].

Machine Unlearning in Evolving Data Streams. Evolving data

streams pose problems to machine learning models, especially neu-

ral networks, due to shifts in the data distributions and the model

predictions [70]. Although there are ways to overcome this limi-

tation [40], they rely on the changes in the model parameters to

detect concept drift [70]. However, such detection might be not

reliably correct in unlearning settings, where the changes in model

parameters are approximate. Consequently, it is expected that ma-

chine learning for streaming removal request may attract more

attention in the next few years. It is noteworthy that unlearning

might be used to repair obsolete models by forgetting old data that

2
https://insights.daffodilsw.com/blog/machine-unlearning-what-it-is-all-about

3
https://github.com/ZIYU-DEEP/Awesome-Information-Bottleneck

https://insights.daffodilsw.com/blog/machine-unlearning-what-it-is-all-about
https://github.com/ZIYU-DEEP/Awesome-Information-Bottleneck
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contradicts with the detected concept drift. However, this requires

a contradiction analysis between old and new data [74].

A similar setting is the consideration of out-of-distribution (OOD)

data in the forget set. For those settings, the unlearning is imbal-

anced. Some data might have no impact while the others have great

influence on the model parameters. There are studies on learning

algorithms for OOD data in federated learning [151]. Hence, it may

be worthwhile investigating novel unlearning algorithms tailored

to OOD data.

Causality in Machine Unlearning. There are cases where a large
amount of data need to be removed from an machine learning sys-

tem, even though the portion of data to be forgotten is insignificant

in comparison to all the data. For example, a data pollution attack

might affect millions of data items, but only a few of them can be de-

tected by human experts or SOTA detection methods [13]. Causality

analysis [65] could become a useful tool to automatically unlearn

the polluted data in this setting and guarantee the non-existence of

the polluted information in the final model.

9 CONCLUSION
This survey is the first to investigate machine unlearning tech-

niques in a systematic manner. In this paper, we addressed the

primary difficulties and research advancements in conceptualiz-

ing, planning, and solving the problems of machine unlearning. In

addition, we presented a unified taxonomy that divides machine

unlearning strategies into three approaches: model-agnostic meth-

ods, model-intrinsic methods, and data-driven methods. We hope

that our taxonomy can help categorize future studies and gain

deeper insight into methodologies as well as address the difficulties

in machine unlearning. Also, we expect this survey can assist re-

searchers in identifying the most optimal unlearning strategies for

different applications. The survey provides clear summaries and

comparisons between various unlearning methodologies, giving

a comprehensive and general view of current work as well as the

current process of machine unlearning.
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